Loading [MathJax]/jax/output/SVG/jax.js

不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系

朱赫, 黄方林, 张爱品, 冯帆, 温伟斌

朱赫, 黄方林, 张爱品, 等. 不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系[J]. 复合材料学报, 2023, 40(8): 4659-4669. DOI: 10.13801/j.cnki.fhclxb.20221123.001
引用本文: 朱赫, 黄方林, 张爱品, 等. 不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系[J]. 复合材料学报, 2023, 40(8): 4659-4669. DOI: 10.13801/j.cnki.fhclxb.20221123.001
ZHU He, HUANG Fanglin, ZHANG Aipin, et al. Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4659-4669. DOI: 10.13801/j.cnki.fhclxb.20221123.001
Citation: ZHU He, HUANG Fanglin, ZHANG Aipin, et al. Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4659-4669. DOI: 10.13801/j.cnki.fhclxb.20221123.001

不同温度下改性聚氨酯混凝土单轴拉伸试验及本构关系

基金项目: 湖南省自然科学基金项(2021 JJ40710);“中铁开投科技研究开发计划(2021-B类-04)”基金
详细信息
    通讯作者:

    温伟斌,博士,副教授,博士生导师,研究方向为力学中的数值计算方法和桥梁结构设计 E-mail: wenwbin@126.com

  • 中图分类号: U443.33;TB333

Tensile properties and constitutive relation of modified polyurethane concrete at different temperatures

Funds: Natural Science Foundation of Hunan Province (2021 JJ40710); Science and Technology Research and Development Plan of China Railway Development and Investment Group CO., LTD. (2021-Category B-04)
  • 摘要: 钢桥面铺装材料易受温度影响而产生破坏,其中拉伸破坏最为常见。改性聚氨酯混凝土是一种新型钢桥面铺装材料,为研究温度对其拉伸性能的影响,在−10℃、0℃、15℃、40℃和60℃这5组温度环境下分别进行单轴拉伸试验研究。为保证拉伸试验成功,率先设计并制作了两种拉伸试件(哑铃形试件、经圆弧过渡的哑铃形试件)。同时设计用于匹配试件的拉伸试验新型夹具,开展两种试件的对比试验。通过拉伸试验,测得该材料在单轴受拉时的应力-应变曲线,依据该曲线计算得到各拉伸性能指标。研究结果表明:使用经圆弧过渡的哑铃形试件与新夹具的组合方案的拉伸效果更优。新型夹具可通过增设螺栓约束夹具的变形,从而有效改善加载过程中试件的局部应力集中效应。随温度的升高,改性聚氨酯混凝土的抗拉强度、拉伸弹性模量均呈减小趋势;峰值应变、断裂能密度和拉压比均呈增大趋势。提出了各拉伸性能指标的温度相关计算式。构建适用于改性聚氨酯混凝土的单轴拉伸本构关系,计算与试验结果吻合良好,为该材料未来的工程应用提供参考。

     

    Abstract: The steel bridge deck pavement materials are susceptible to damage caused by temperature, among which tensile damage is the most common. Modified polyurethane concrete is a new type of steel bridge deck pavement material. In order to study the effect of temperature on its tensile properties, uniaxial tensile experiments were carried out at −10°C, 0°C, 15°C, 40°C and 60°C. In order to ensure the success of the experiment, two kinds of experimental specimens (dumbbell-shaped specimen and dumbbell-shaped specimen with circular arc edge) were first designed. Meanwhile, a novel tensile testing fixture used to match the specimen was designed, and the experiment comparison of the two specimens was carried out. Through the uniaxial tensile experiment, the stress-strain curves were obtained and the tensile performance indexes were calculated according to the curve. The results show that using the dumbbell-shaped specimen with circular arc edge and the new tensile testing fixture has better effect. The new fixture can restrain the deformation of the fixture by adding bolts, so as to effectively reduce the stress concentration in the loading process. With the increase of temperature, the tensile strength and tensile elastic modulus of modified polyurethane concrete decrease. The peak strain, fracture energy density and tension-compression ratio all increase. The temperature related expressions of the tensile performance indexes are proposed. The uniaxial tensile constitutive relation of modified polyurethane concrete is constructed, and the calculation is in good agreement with the experimental results. The results can serve as basic references for the future engineering application of this material.

     

  • 图  1   单轴拉伸试件尺寸图

    R—Radius of the arc transition zone; LS—Name of the tensile specimen

    Figure  1.   Size of uniaxial tensile specimen

    图  2   夹具变形示意图

    Figure  2.   Diagram of fixture deformation

    图  3   单轴拉伸试验试件

    Figure  3.   Uniaxial tensile experiment specimens

    图  4   恒温恒湿箱

    Figure  4.   Constant temperature box

    图  5   单轴拉伸试验装置

    p1, p2, p3—Strain gauge paste position

    Figure  5.   Uniaxial tensile experiment device

    图  6   部分改性聚氨酯混凝土试件断裂图

    Figure  6.   Fracture of some specimens for modified polyurethane concrete

    图  7   部分改性聚氨酯混凝土试件断裂面图

    Figure  7.   Fracture cross section of some specimens for modified polyurethane concrete

    图  8   改性聚氨酯混凝土抗拉强度与温度的关系

    T, T0—Test temperature and 15℃; ft, T, ft,T0—Axial tensile strength of modified polyurethane concrete at temperature T and T0; R2—Coefficient of determination; v2—Residual sum of squares

    Figure  8.   Relationship between tensile strength and temperature of modified polyurethane concrete

    图  9   改性聚氨酯混凝土峰值应变与温度的关系

    εt, T, εt,T0—Peak strain of modified polyurethane concrete at temperature T and T0

    Figure  9.   Relationship between peak stress and temperature of modified polyurethane concrete

    图  10   改性聚氨酯混凝土拉伸弹性模量与温度的关系

    Et, T, Et,T0—Tensile elastic modulus of modified polyurethane concrete at temperature T and T0

    Figure  10.   Relationship between elastic modulus and temperature of modified polyurethane concrete

    图  11   温度对改性聚氨酯混凝土轴向拉伸应力-应变曲线的影响

    Figure  11.   Effect of temperature on stress-strain curves of modified polyurethane concrete

    图  12   改性聚氨酯混凝土单轴拉伸本构关系模型计算值与试验值的对比

    Figure  12.   Comparison between calculated values of constitutive relation model and experiment values for modified polyurethane concrete

    表  1   改性聚氨酯混凝土配合比

    Table  1   Mix proportion of modified polyurethane concrete

    ComponentParticle size D/mmMass fraction/wt%Fineness modulusApparent density
    /(kg·m−3)
    Coarse aggregate
    (4.76-9.52 mm)
    4.76≤D≤9.52303.42600
    Fine aggregate
    (0.16-4.76 mm)
    0.16≤D≤0.6217.82.52580
    0.62≤D≤2.3520
    2.35≤D≤4.7616.8
    Modified polyurethane binder15.2
    Catalyst 0.2
    下载: 导出CSV

    表  2   改性聚氨酯混凝土单轴拉伸试验方法效果对比

    Table  2   Effect comparison of uniaxial tensile experiment method for modified polyurethane concrete

    NumberExperimental methodDiagramThickness wSpecimen failureDamage featureReference
    LS-1End bond tensile
    dumbbell-shaped specimen
    w=75 mmCracks mostly occur at the loading
    end and finally destroyed
    [24-25]
    LS-2End bond tensile
    dumbbell-shaped specimen with circular arc edge
    (bolts added)
    w=75 mmSpecimens are broken
    in the middle without obvious
    stress concentration
    New design
    Note: ϕ—Diameter of the steel bar.
    下载: 导出CSV

    表  3   改性聚氨酯混凝土单轴拉伸试验结果

    Table  3   Results of uniaxial tensile experiment for modified polyurethane concrete

    Temperature/℃Tensile strength/MPaPeak strain/%Elastic modulus/GPaFracture energy density/(N·mm−2)Compressive strength/MPa[9]
    −10 10.28 0.0681 16.86 3.304 81.78
    0 10.80 0.0690 16.16 3.929 81.83
    15 9.79 0.0958 11.93 4.247 58.87
    40 5.87 0.1432 6.23 5.561 39.50
    60 3.95 0.4967 1.21 12.843 20.91
    下载: 导出CSV

    表  4   不同温度下的改性聚氨酯混凝土拉压比

    Table  4   Tensile-compression ratio of modified polyurethane concrete at different temperatures

    Temperature/℃Tensile
    strength
    /MPa
    Compressive
    strength/MPa
    Splitting tensile
    strength/MPa
    Tension-compression
    ratio W1/%
    Tension-compression
    ratio W2[32]/%
    Relative error/%
    −10 10.28 86.67 8.24 11.86 9.51 19.81
    0 10.80 79.62 7.93 13.56 9.96 26.55
    15 9.79 71.93 7.11 13.61 9.88 27.40
    40 5.87 42.97 4.77 13.66 11.1 18.74
    60 3.95 26.19 2.67 15.08 10.19 32.43
    下载: 导出CSV

    表  5   改性聚氨酯混凝土5组温度下与温度相关的上升段参数aTbT的拟合值

    Table  5   Fitting values of aT and bT of modified polyurethane concrete under five groups of temperatures

    Temperature/°C aT bT
    −10 1.30 1.06
    0 1.00 1.00
    15 1.19 0.98
    40 0.51 1.23
    60 0.37 1.36
    下载: 导出CSV
  • [1] 徐世法, 张业兴, 郭昱涛, 等. 基于贯入阻力测试系统的聚氨酯混凝土压实时机确定方法[J]. 中国公路学报, 2021, 34(7):226-235. DOI: 10.3969/j.issn.1001-7372.2021.07.019

    XU Shifa, ZHANG Yexing, GUO Yutao, et al. Determination of polyurethane concrete compaction timing based on penetration resistance test system[J]. China Journal of Highway and Transport,2021,34(7):226-235(in Chinese). DOI: 10.3969/j.issn.1001-7372.2021.07.019

    [2] 吴淑印. 钢桥面高延性水泥基材料铺装结构界面特性研究[D]. 南京: 东南大学, 2019.

    WU Shuyin. Study on interfacial characteristics of steel deck pavement with engineered cementitious composites[D]. Nanjing: Southeast University, 2019(in Chinese).

    [3]

    ZHANG K X, SUN Q S. Experimental study of reinforced concrete T-beams strengthened with a composite of prestressed steel wire ropes embedded in polyurethane cement (PSWR-PUC)[J]. International Journal of Civil Engineering,2017,16:1109-1123.

    [4]

    VIJAYARAGHAVAN J, JEEVAKKUMAR R, VENKATESAN G, et al. Influence of kaolin and dolomite as filler on bond strength of polyurethane coated reinforcement concrete[J]. Construction and Building Materials,2022,325:126675. DOI: 10.1016/j.conbuildmat.2022.126675

    [5] 刘小祥, 刘翼, 安珈璇, 等. 连续长玻璃纤维/聚氨酯复合材料的制备与力学性能[J]. 复合材料学报, 2019, 36(3):617-623.

    LIU Xiaoxiang, LIU Yi, AN Jiaxuan, et al. Preparation and mechanical properties of continuous long glass fiber/polyurethane composites[J]. Acta Materiae Compositae Sinica,2019,36(3):617-623(in Chinese).

    [6]

    HONG B, LU G Y, GAO J L. Evaluation of polyurethane dense graded concrete prepared using the vacuum assisted resin transfer molding technology[J]. Construction and Building Materials,2021,269:121340. DOI: 10.1016/j.conbuildmat.2020.121340

    [7]

    ALEIS K A, LABARCA I K. Evaluation of the URETEK method & of pavement lifting: WI-02-07[R]. Washington: Wisconsin Department of Transportation, 2007.

    [8]

    HUSSAIN H K, ZHANG L Z, LIU G W. An experimental study on strengthening reinforced concrete I-beams using new material polyurethane-cement (PUC)[J]. Construction and Building Materials,2013,40:104-117. DOI: 10.1016/j.conbuildmat.2012.09.088

    [9] 雷建华, 徐斌, 何旭辉. 改性聚氨酯混凝土受压性能及本构关系研究[J]. 铁道科学与工程学报, 2023, 20(1): 278-288.

    LEI Jianhua, XU Bin, HE Xuhui. Research on compressive properties and constitutive relation of modified polyurethane concrete[J]. Journal of Railway Science and Engineering, 2023, 20(1): 278-288(in Chinese).

    [10] 徐斌, 徐速, 胡风, 等. 一种钢桥面复合式铺装结构及铺装方法: 中国, CN109056525 B[P]. 2020-10-27.

    XU Bin, XU Su, HU Feng, et al. A composite pavement structure and method of steel deck: China, CN109056525 B[P]. 2020-10-27(in Chinese).

    [11] 胡淑芳, 杨辉. 基于保通条件下某特大桥钢桥面铺装快速提升改造技术实践[J]. 江西建材, 2021(6):136, 138. DOI: 10.3969/j.issn.1006-2890.2021.06.086

    HU Shufang, YANG Hui. Practice of rapid upgrading and reconstruction technology of steel deck pavement of a super large bridge based on the condition of communication[J]. Jiangxi Building Materials,2021(6):136, 138(in Chinese). DOI: 10.3969/j.issn.1006-2890.2021.06.086

    [12] 李博强. 沈阳市长青桥钢桥桥面铺装的对比与选用[J]. 北方交通, 2019(6):25-28.

    LI Boqiang. Comparison and selection of steel bridge deck pavement of changqing bridge in shenyang[J]. Northern Communications,2019(6):25-28(in Chinese).

    [13] 李继宏. ECO改性聚氨酯混凝土在寒冷地区钢桥桥面铺装施工中的应用[J]. 北方交通, 2019(6):29-32.

    LI Jihong. Application of ECO modified polyurethane concrete on steel bridge deck pavement in cold area[J]. Northern Communications,2019(6):29-32(in Chinese).

    [14]

    LOOK K, HEEK P, MARK P. Direct tensile tests of supercritical steel fibre reinforced concrete[J]. Fibre Reinforced Concrete: Improvements and Innovations II,2022,36:132-142.

    [15] 郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5):2897-2912.

    GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on uniaxial tensile properties of concrete[J]. Acta Materiae Compositae Sinica,2023,40(5):2897-2912(in Chinese).

    [16] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8):50-58. DOI: 10.3969/j.issn.1001-7372.2015.08.007

    ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport,2015,28(8):50-58(in Chinese). DOI: 10.3969/j.issn.1001-7372.2015.08.007

    [17]

    KAMIL Z, ANDRZEJ G, SANDRA C, et al. Tensile properties of polymer repair materials-effect of test parameters[J]. Advanced Materials Research,2015,1129:445-452. DOI: 10.4028/www.scientific.net/AMR.1129.445

    [18]

    WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites,2014,48:53-66. DOI: 10.1016/j.cemconcomp.2013.12.015

    [19]

    DENG Z Y, LIU X R, YANG X, et al. A study of tensile and compressive properties of hybrid basalt-polypropylene fiber-reinforced concrete under uniaxial loads[J]. Structural Concrete,2021,22:396-409. DOI: 10.1002/suco.202000006

    [20] 杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11):3925-3938.

    GAO Xiaolong, WANG Junyan, GUO Junyuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica,2021,38(11):3925-3938(in Chinese).

    [21]

    DONNINI J, DE CASOY BASALO F, CORINALDESI V, et al. Fabric-reinforced cementitious matrix behavior at high-temperature: Experimental and numerical results[J]. Composites Part B: Engineering,2017,108:108-121. DOI: 10.1016/j.compositesb.2016.10.004

    [22]

    JIN H, YANG S, XU H, et al. Uniaxial tensile performance of PP-ECC: Effect of curing temperatures and fly ash contents[J]. KSCE Journal of Civil Engineering,2020,24:3435-3446. DOI: 10.1007/s12205-020-0402-x

    [23] 徐斌, 徐速, 尤其, 等. 树脂混凝土及其制备方法、钢桥面铺装结构及其施工方法: 中国, CN113666665 A[P]. 2022-04-12.

    XU Bin, XU Su, YOU Qi, et al. Resin concrete and its preparation method, steel deck pavement structure and construction method: China, CN113666665 A[P]. 2022-04-12(in Chinese).

    [24] 胡翱翔, 梁兴文, 于婧, 等. 超高性能混凝土轴心受拉力学性能试验研究[J]. 湖南大学学报(自然科学版), 2018, 45(9):30-37.

    HU Aoxiang, LIANG Xingwen, YU Jing, et al. Experimental study of uniaxial tensile characteristics of ultra-high performance concrete[J]. Journal of Hunan University (Natural Sciences),2018,45(9):30-37(in Chinese).

    [25]

    KAMAL A, KUNIEDA M, NAOSHI U. Evaluation of crack opening performance of a repair material with strain hardening behavior[J]. Cement and Concrete Composites,2008,30:863-871. DOI: 10.1016/j.cemconcomp.2008.08.003

    [26] 中华人民共和国住房和城乡建设部. 混凝土物理力学性能试验方法标准: GB/T 50081—2019[S]. 北京: 中国建筑工业出版社, 2019.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Standard for test methods of concrete physical and mechanical properties: GB/T 50081—2019[S]. Beijing: China Architecture & Building Press, 2019(in Chinese).

    [27] 郝增恒, 王滔, 王民, 等. 钢桥面铺层温度场分析[J]. 公路交通科技, 2018, 35(11):36-43.

    HAO Zengheng, WANG Tao, WANG Min, et al. Analysis on temperature field of steel bridge deck pavement[J]. Jour-nal of Highway and Transportation Research and Development,2018,35(11):36-43(in Chinese).

    [28] 徐鸥明, 向顺琳, 杨星皓. 钢桥面铺装层材料应用与发展[J]. 公路, 2022(9):44-50.

    XU Ouming, XIANG Shunlin, YANG Xinghao. Application and development of steel bridge deck pavement structure and materials[J]. Highway,2022(9):44-50(in Chinese).

    [29]

    ZHANG J, SHEN H Z, ZHANG X, et al. Experimental and theoretical investigation of mechanical behavior related to temperature, humidity and strain rate on silane-modified polyurethane sealant[J]. Polymer Testing,2021,103:107370. DOI: 10.1016/j.polymertesting.2021.107370

    [30]

    CHEN X L, ZHOU J, LUO Y L, et al. Molecular dynamics simulation insight into the temperature dependence and healing mechanism of an intrinsic self-healing polyurethane elastomer[J]. Physical Chemistry Chemical Physics,2020,22:17620-17631. DOI: 10.1039/D0CP03013A

    [31]

    LI J, ZHANG J W, CHEN S. Study on dynamic viscoelastic properties and constitutive model of non-water reacted polyurethane grouting materials[J]. Measurement,2021,176:109115. DOI: 10.1016/j.measurement.2021.109115

    [32]

    LEI J, FENG F, XU S, et al. Study on mechanical properties of modified polyurethane concrete at different tempera-tures[J]. Applied Sciences,2022,12:3184. DOI: 10.3390/app12063184

  • 目的 

    钢桥面铺装材料易受温度影响而产生破坏,其中拉伸破坏最为常见。改性聚氨酯混凝土是一种新型钢桥面铺装材料,具有较好的耐磨性、防水性,与钢材的黏结性较好,且具有较好的工作性。目前改性聚氨酯混凝土已应用于国内多座桥梁的桥面铺装工程中,但目前国内外没有人对改性聚氨酯混凝土的受拉本构关系进行深入研究,对其温度相关性的受拉本构关系的研究更是少之又少。本文通过进行单轴拉伸试验研究温度对其拉伸性能的影响。

    方法 

    为保证拉伸试验成功,率先设计并制作了两种拉伸试件(哑铃形试件,经圆弧过渡的哑铃形试件)。同时设计用于匹配试件的拉伸试验新型夹具,开展两种试件的对比试验。选取效果更好的拉伸试验方案后,在-10℃、0℃、15℃、40℃和60℃五组温度环境下分别进行单轴拉伸试验。通过恒温恒湿箱控制试件的温度,通过1000kN微机控电液伺服试验机(WAW-1000-G)进行试件的加载并直接读取荷载数据,通过贴片式应变采集仪(HBM MGC plus)测量应变。测得该材料在单轴受拉时的应力-应变曲线,依据该曲线计算得到各拉伸性能指标。

    结果 

    对比试验中,使用经圆弧过渡的哑铃形试件与新夹具的组合方案的拉伸效果更优。新型夹具可通过增设螺栓约束夹具的变形,从而有效改善加载过程中试件的局部应力集中效应。改性聚氨酯混凝土单轴拉伸试验中,随着荷载的不断增加,主裂缝逐渐扩展贯穿整个横截面,最终绝大多数的试件从中间部分断裂成两部分。试件主裂缝整齐,断裂面平整,无偏心受拉现象。随温度的升高,改性聚氨酯混凝土的抗拉强度、拉伸弹性模量均呈减小趋势;峰值应变、断裂能密度和拉压比均呈增大趋势。将各拉伸性能指标和温度无量纲化后通过最小二乘准则进行回归分析,提出了各拉伸性能指标的温度相关计算式。将单轴拉伸试验得到的拉伸应力-应变曲线中的应力与应变无量纲化,同时引入和两个温度相关参数,通过最小二乘准则进行回归分析,构建适用于改性聚氨酯混凝土的单轴拉伸本构关系。

    结论 

    提出了一种适用于改性聚氨酯混凝土的单轴拉伸试验方案,经试验验证效果良好,改性聚氨酯混凝土试件几乎都在中间位置被拉断。提出了改性聚氨酯混凝土各拉伸性能指标的温度相关计算式,拟合的相关系数R均大于0.95,残差平方和v均小于0.05。构建适用于改性聚氨酯混凝土的单轴拉伸本构关系,并对其中的和两个温度相关参数提出建议取值,计算结果与试验数据吻合良好。本文所得改性聚氨酯混凝土各拉伸性能指标的温度相关计算式和单轴拉伸本构关系,可为该材料未来的工程应用提供参考。

  • 改性聚氨酯混凝土是一种钢桥面铺装的新材料,具有较好的耐磨性、防水性,与钢材的黏结性较好,常温条件即可铺装成型,桥面铺装完毕后两小时即可通车。钢桥面铺装材料易受温度影响而产生破坏,其中拉伸破坏最为常见。作为一种新型混凝土,国内外对改性聚氨酯混凝土的拉伸性能和本构关系研究较少,对其与温度相关的本构关系研究尚处空白,阻碍该材料的进一步广泛应用。

    本文自主设计和制作了拉伸试验新试件和新试验夹具,与参考相关文献制作的试件进行了对比试验,发现新试件与新夹具组合的试验方案有效改善了加载过程中试件的局部应力集中效应,效果较好。本文使用自主设计的试验方案在-10℃、0℃、15℃、40℃和60℃五组温度下分别对改性聚氨酯混凝土进行单轴拉伸试验研究,得到其单轴拉伸应力-应变曲线和各种拉伸性能指标。试验结果表明,随温度的升高,改性聚氨酯混凝土的抗拉强度、拉伸弹性模量均呈减小趋势;峰值应变、断裂能密度和拉压比均呈增大趋势。其中60℃时的抗拉强度(3.95MPa)仅为15℃条件下(9.79MPa)的40.35%,受温度影响较为明显。提出了各拉伸性能指标的温度相关计算式。构建适用于改性聚氨酯混凝土的单轴拉伸本构关系,计算与试验结果吻合良好。为该材料未来的工程应用提供参考。

    单轴拉伸试验试件(a)和试验夹具(b)的尺寸图

图(12)  /  表(5)
计量
  • 文章访问数:  914
  • HTML全文浏览量:  466
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2022-10-24
  • 录用日期:  2022-11-11
  • 网络出版日期:  2022-11-24
  • 刊出日期:  2023-08-14

目录

    /

    返回文章
    返回