Abstract:
Biaxial warp-knitted glass fabric and quadriaxial warp-knitted glass fabric were used as reinforcement, respectively. The flat and curved structure samples were prepared by applying the vacuum assisted resin transfer molding process. The bending behavior and quasi-static indentation characteristics of composite specimen were experimentally tested, and the influence of the reinforcement structure on the bending behavior of the composite in 0° and 90° directions was analyzed. On this basis, the influences of the reinforcement structure and the radius of curvature of the sample on the quasi-static indentation characteristics were also analyzed. Results show that the equivalent bending strength of the composite reinforced with biaxial warp-knitted fabric in 0° and 90° directions increase by 94.74% and 98.37%, respectively in comparison with that of the quadriaxial warp-knitted fabric, and the maximum fracture strain of the quadriaxial warp-knitted fabric in 0° and 90° directions are 1.9 times and 2.4 times than that of the biaxial warp-knitted fabric. When the curvature radius of biaxial composite is 260 mm and the curvature radius of quadriaxial composite is 150 mm, the bending strength of the two materials are optimal. When the curvature radius of biaxial composite is 150 mm and the curvature radius of quadriaxial composite is 80 mm, the fracture strain of the two composites are optimal. The experimental results will provide guidance for application of curved structure composite in various large outdoor building domes.