Mold filling process and simulation of sandwich composites with damping layer
-
摘要: 在复合材料中引入黏弹性阻尼层是改善复合材料结构振动特性的有效方法。针对穿孔硅橡胶夹芯复合材料的真空辅助树脂传递工艺(VARTM)进行了实验与仿真分析。首先采用恒压注射条件分别测试了纤维增强材料及加入导流网后的等效渗透率。然后搭建了实验室VARTM观测平台进行了充模实验,同时基于RTM-Worx软件建立了树脂充模模型。通过对比实验与仿真的树脂流动状态图及不同时刻的填充面积,验证了仿真模型的有效性。最后,探究了阻尼层穿孔列间距、行距、直径及“边缘效应”等参数对树脂充模的时间及充模过程的影响。结果表明:仿真模型能够较好预测树脂流动情况,不合理的阻尼层参数会影响树脂的流动甚至导致缺陷的产生。
-
关键词:
- 真空辅助树脂传递模塑 /
- 夹芯复合材料 /
- 充模过程 /
- 渗透率 /
- 边缘效应
Abstract: Introducing viscoelastic damping layer into composites is an effective method to improve the composite structural vibration characteristics. The vacuum assisted resin transfer molding (VARTM) process of sandwich composites with perforated silicone rubber was investigated by experiment and simulation. Firstly, the equivalent permeability of fiber reinforced materials and its combination with the flow medium were tested under constant pressure injection conditions. Then, the VARTM platform was set up to observe mold filling experiment in the laboratory. The resin filling model was established based on the RTM-Worx software. The validity of the simulation model was verified by comparing the experimental resin flow diagram and the filling area with simulated results at different time. Finally, the effects of the parameters such as the spacing between columns, the row spacing, the diameter of the holes in the damping layer and the "edge effect" on the resin filling time and the filling process were discussed. The results show that the simulation model can better predict the resin flow behavior, and unreasonable parameters of damping layer can affect the resin flow and even lead to defects. -
-
表 1 材料参数测试结果
Table 1 Test results of material parameters
Laminate
typeEquivalent
porosity/%Average permeability/
(10−11 m2)Length wise Kx Width wise Ky EW200 57.4 2.78 2.67 EW200+ 60.0 115 83 表 2 阻尼层穿孔间距对含阻尼层夹芯复合材料VARTM成型树脂流动的影响
Table 2 Effects of damping layer perforation spacing on resin flow in VARTM sandwich composites with damping layer
Process parameter Resin flow diagram at 50% filling modulus of the preform D=2 mm, C=15 mm
Change row space SD=2 mm, S=15 mm
Change column space C表 3 不同穿孔直径对应的含阻尼层夹芯复合材料VARTM成型孔洞渗透率
Table 3 Permeability of VARTM sandwich composites with damping layer in different perforation diameters
Diameter/mm Porosity/mm2 0.5 3.927×10−5 1 0.0127 2 0.161 3 0.498 4 1.031 5 1.758 6 2.682 7 3.802 8 5.118 -
[1] SUN S, WANG X, LIANG J, et al. Analysis on fracture behaviour of stitched foam sandwich composites using interlaminar tension test[J]. Journal of Sandwich Structures & Materials,2022,24(3):1515-1534.
[2] SERRANO-GONZÁLEZ J, LACAL-ARÁNTEGUI R. Technological evolution of onshore wind turbines-A market-based analysis[J]. Wind Energy,2016,19(12):2171-2187. DOI: 10.1002/we.1974
[3] ZHOU X Q, YU D Y, SHAO X Y, et al. Research and applications of viscoelastic vibration damping materials: A review[J]. Composite Structures,2016,136:460-480. DOI: 10.1016/j.compstruct.2015.10.014
[4] LAKES R S. High damping composite materials: Effect of structural hierarchy[J]. Journal of Composite Materials,2002,36(3):287-297. DOI: 10.1177/0021998302036003538
[5] 邓京兰, 王继辉, 连军. RTM充模过程(Ⅱ): 有限元分析[J]. 武汉理工大学学报, 2003, 25(8): 48-51. DENG Jinglan, WANG Jihui, LIAN Jun. Computer simulation of RTM mold filling processes(II): FEM analysis[J]. Journal of Wuhan University of Technology, 2003, 25(8): 48-51(in Chinese).
[6] YOON M K, DOLAN D F. Homogenous modeling of VARTM processes with hybrid layered media[J]. Journal of Composite Materials,2008,42(8):805-824. DOI: 10.1177/0021998307088567
[7] YANG B, JIN T, BI F, et al. Modeling the resin flow and numerical simulation of the filling stage for vacuum-assisted resin infusion process[J]. Journal of Reinforced Plastics and Composites,2014,33(21):1976-1992. DOI: 10.1177/0731684414551039
[8] SHEVTSOVA S, ZHILYAEVB I, CHANG S H, et al. Two-stage numerical approach for reliable recognition of dry spots at the VAP infusion of large composite parts of complex shape[J]. Composites Structures,2021,259:113437. DOI: 10.1016/j.compstruct.2020.113437
[9] 赖家美, 王德盼, 陈显明, 等. VARTM工艺中高渗透导流介质对树脂充填行为的影响[J]. 高分子材料科学与工程, 2014, 30(7):120-125, 131. DOI: 10.16865/j.cnki.1000-7555.2014.07.025 LAI Jiamei, WANG Depan, CHEN Xianming, et al. Effects of high-permeability medium on resin filing behavior in vacuum assisted resin transfer molding process[J]. Polymeric Materials Science and Engineering,2014,30(7):120-125, 131(in Chinese). DOI: 10.16865/j.cnki.1000-7555.2014.07.025
[10] 李彩林, 高霞, 柳鑫, 等. VARI液体成型复合材料机盖的数值模拟及工艺验证[J]. 塑料工业, 2020, 48(2): 92-96, 174. LI Cailin, GAO Xia, LIU Xin, et al. Digital simulation and progress verification of composite cover plate by VARI technology[J]. Plastics Industry, 2020, 48(2) : 92-96, 174(in Chinese).
[11] 叶乔丹, 吴晓青. 真空灌注成型工艺导流网和夹层结构沟槽设计的模拟研究[J]. 纤维复合材料, 2018, 35(1): 25-32. YE Qiaodan, WU Xiaoqing. Study of flow medium and groove design of sandwich structure VARTM process molding[J]. Fiber Composites, 2018, 35(1): 25-32(in Chinese).
[12] GRAY W G, MILLER C T. Examination of darcy's law for flow in porous media with variable porosity[J]. Environmental Science & Technology,2004,38:5895-5901.
[13] 詹东, 杨睿, 孙士勇. RTM成型工艺中纤维体积密度不均匀性对树脂流动的影响[J]. 玻璃钢/复合材料, 2017(10):62-67. DOI: 10.3969/j.issn.1003-0999.2017.10.011 ZHAN Dong, YANG Rui, SUN Shiyong. Effect of fiber volume density heterogeneity on resin flow in RTM molding process[J]. Fiber Reinforced Plastics/Composites,2017(10):62-67(in Chinese). DOI: 10.3969/j.issn.1003-0999.2017.10.011
[14] MAGAGNATO D, SEUFFERT J, BERNATH A, et al. Experimental and numerical study of the influence of integrated load transmission elements on filling behavior in resin transfer molding[J]. Composites Structures,2018,198:135-143.
[15] LAWRENCE J M, FREY P, OBAID A A, et al. Simulation and validation of resin flow during manufacturing of compo-site panels containing embedded impermeable inserts with the VARTM process[J]. Polymer Composites,2007,28(4):442-450. DOI: 10.1002/pc.20293
[16] BERTLING D, KAPS R, MULUGET A. Analysis of dry-spot behavior in the pressure field of a liquid composite molding process[J]. Aeronautical Journal,2016,7:577-585. DOI: 10.1007/s13272-016-0207-2
[17] ARBTER R. Contribution to robust resin transfer molding[D]. Zurich Switzerland: Eidgenössische Technische Hochschule ETH Zürich, 2008.
[18] 金世奇, 李文晓, 刘昊鑫. 缝合夹层结构复合材料树脂传递模塑成型工艺充模仿真[J]. 复合材料学报, 2018, 35(12): 3342-3349. JIN Shiqi, LI Wenxiao, LIU Haoxin. Filling simulation of stitched sandwich composite by resin transfer molding process[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3342-3349(in Chinese).
[19] 王科, 赖家美, 鄢冬冬, 等. 缝合泡沫夹芯结构复合材料VARTM工艺树脂充填模拟及验证[J]. 高分子材料科学与工程, 2015, 31(11):124-129. DOI: 10.16865/j.cnki.1000-7555.2015.11.025 WANG Ke, LAI Jiamei, YAN Dongdong, et al. Process simulation and verification of stitched foam core sandwich structure by VARTM process[J]. Polymeric Materials Science and Engineering,2015,31(11):124-129(in Chinese). DOI: 10.16865/j.cnki.1000-7555.2015.11.025
[20] JISHI H Z, UMER R, CANTWELL W J. Skin-core debonding in resin-infused sandwich structures[J]. Polymer Composites,2016,37(10):2974-2981.
[21] YAN C, WU H L, REN X M, et al. Experimental and numerical study on the permeation behavior of foam-core sandwich panels in LCM[J]. Fibers and Polymers,2021,22(9):2612-2625. DOI: 10.1007/s12221-021-0310-9
[22] JHAN Y T, LEE Y J, CHUNG C H. Resin flowing analysis in sandwich laminates under VARTM process[J]. Journal of Reinforced Plastics and Composites,2011,30(6):533-545. DOI: 10.1177/0731684411399142
[23] JHAN Y T, LEE Y J, CHUNG C H. Experimental and numerical investigation of the VARTM process with a sandwich structure[J]. Journal of Composite Materials,2012,46(12):1417-1430. DOI: 10.1177/0021998311418703
[24] 施赫荣, 王继辉, 倪爱清, 等. 穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选[J]. 复合材料学报, 2023, 40(2):782-793. DOI: 10.13801/j.cnki.fhclxb.20220323.001 SHI Herong, WANG Jihui, NI Aiqing, et al. Simulation and optimization of infusion process for perforated foam sandwich composite[J]. Acta Materiae Compositae Sinica,2023,40(2):782-793(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20220323.001
[25] 雷波, 周持兴, 俞炜, 等. 泡沫夹芯结构板泡沫壁流道内的流动特性[J]. 化工学报, 2012, 63(3):775-780. DOI: 10.3969/j.issn.0438-1157.2012.03.014 LEI Bo, ZHOU Chixing, YU Wei, et al. Flow characteristics in foam wall channel of foam sandwich panel[J]. CIESC Journal,2012,63(3):775-780(in Chinese). DOI: 10.3969/j.issn.0438-1157.2012.03.014
[26] 中华人民共和国国家质量监督检验检疫总局. 中国国家标准化管理委员会. 纤维增强塑料密度和相对密度试验方法: GB/T 1463—2005[S]. 北京: 中国标准出版社, 2005. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Standardization Administration of the People's Republic of China. Fiber enhanced plastic density and relative density test methods: GB/T 1463—2005[S]. Beijing: Standards Press of China, 2005(in Chinese).
[27] 穆文博, 严波. VARTM的边缘效应数值模拟研究[J]. 模具技术, 2022(2):1-7. DOI: 10.3969/j.issn.1001-4934.2022.02.001 MU Wenbo, YAN Bo. Numerical simulation study on the edge effect of VARTM[J]. Die and Mould Technology,2022(2):1-7(in Chinese). DOI: 10.3969/j.issn.1001-4934.2022.02.001
-
期刊类型引用(2)
1. 张永文,杨郁,杨倩倩,李艳安,禹兴海. 生物炭/聚乙二醇复合相变材料的制备及其性能研究. 化学工程师. 2024(06): 6-11 . 百度学术
2. 江慧珍,罗凯,王艳,费华,吴登科,叶卓铖,曹雄金. 废弃生物质复合相变材料的构建与应用. 化工进展. 2024(07): 3934-3945 . 百度学术
其他类型引用(6)
-
目的
在复合材料中引入粘弹性阻尼层是改善复合材料结构振动特性的有效方法。由于粘弹性阻尼层一般为疏水性材料阻碍了树脂流动容易导致缺陷产生,所以分析树脂在夹芯材料中的复杂流动行为十分重要。本文针对穿孔硅橡胶夹芯复合的真空辅助树脂传递工艺(VARTM)中树脂填充行为进行研究。
方法首先利用实验室搭建的VARTM实验平台在恒压注射的条件下分别测试了纤维增强材料以及加入导流网后的等效渗透率。其次,基于仿真软件RTM-Worx,采用控制体/有限元(CV/FEM)方法对树脂流动前沿追踪,建立了含阻尼层夹芯复合材料VARTM成型的充模模型。通过对比实验与仿真的树脂流动状态图及不同时刻的填充面积,验证了仿真模型的有效性。进而,探究了阻尼层穿孔间距、行距、直径及“边缘效应”等参数对树脂充模的时间及流动过程的影响。
结果从树脂充模实验可以看出树脂在含阻尼层夹芯复合材料充模过程的流动行为具体表现为:树脂沿平面方向线性扩展快速充满整个导流网,同时导流网面内的树脂沿厚度方向渗透浸润上层合板,接着树脂浸透穿过阻尼层孔洞,然后以孔洞为中心向四周浸润扩散,下层合板的流动前沿呈现一定的锯齿状。对比了实验和仿真充模的树脂流动状态及不同时刻的填充面积。树脂填充流动的形式和填充速率基本一致相同,上层面板树脂流动前沿成线性向前扩展,下层纤维面板中树脂流动前沿呈一定的锯齿状;且上、下层合板的仿真与实验填充速率变化趋势基本一致,验证了模型的有效性。对不同阻尼层穿孔参数预成型体进行树脂充填过程的模拟仿真,得出穿孔间距、行距、直径及“边缘效应”等参数对预成型体树脂充填影响规律。对比分析模拟结果得出:随穿孔间距变大,下层合板树脂流动前沿的锯齿状加深,树脂流动同步性变差。随穿孔行距变大,下层合板的前后两行孔洞的树脂流动前沿易形成干涉,产生包络区域,从而积聚气泡,产生成型缺陷。穿孔直径主要影响充模速率,当直径小于1mm时,充模时间急剧增加。侧流边缘效应会导致不良的树脂流动前沿,一部分树脂提前通过排气口溢出,故在下层合板靠近排气口位置易出现包络现象,增加了充模时间。
结论(1)树脂在含阻尼层夹芯复合材料充模过程中的流动行为可以分为三个阶段,树脂线性扩展填充导流介质及上层合板;树脂填充并穿透阻尼层孔洞;树脂在下层合板中以孔洞为中心向四周扩散。(2)仿真模型考虑了增强纤维和导流网的等效渗透率以及孔洞边界层的边缘效应。仿真结果与实验相比具有较好的一致性从而验证了仿真模型的有效性。(3)不同的阻尼层穿孔参数对充模过程有不同的影响:①穿孔列间距影响下层合板流动锯齿状深度,间距增大树脂流动同步性变差;②穿孔行距增加使下层合板的前后两行孔洞的树脂流动前沿形成干涉,产生包络区域,产生成型缺陷;③穿孔直径主要影响充模速率,当直径小于1mm时,影响了树脂通过孔洞流入下层合板,充模时间增加;④侧流边缘效应会导致不良的树脂流动前沿,在下层合板靠近排气口位置易出现包络现象并增加充模时间。
-
随着风电叶片长度增加、柔性增大,由此引发的结构振动问题不可忽视。通过在复合材料中引入粘弹性阻尼层是改善结构振动特性的有效方法。然而,传统真空辅助树脂传递成型中阻尼层不但影响了树脂的流动和对增强纤维的浸润,降低了复合材料构件的成型效率,且极易出现制造缺陷影响结构性能。
首先采用恒压注射条件分别测试了纤维增强材料以及加入导流网后的等效渗透率,然后在实验室搭建VARTM观测平台进行了充模实验,同时基于RTM-Worx软件建立了考虑边缘效应的树脂充模仿真模型,并通过与实验结果对比流动状态与充模时间验证了模型正确性。最后仿真分析了穿孔间距、穿孔直径等对充模过程的影响:①穿孔列间距影响下层合板流动锯齿状深度,间距增大树脂流动同步性变差。②穿孔行距增加使下层合板的前后两行孔洞的树脂流动前沿形成干涉,产生包络区域,产生成型缺陷。③穿孔直径主要影响充模速率,当直径小于1mm时影响了树脂的从上层流入下层,充模时间显著增加。④侧流边缘效应会导致不良的树脂流动前沿,在下层合板靠近排气口位置易出现包络现象并增加充模时间。
不同穿孔间距对树脂流动的影响
不同穿孔间距对上下层填充时间的影响