碱活化蒙脱土负载铁类芬顿体系去除亚甲基蓝

Removal of methylene blue by Fenton-like system with alkali-activated montmorillonite supported iron catalyst

  • 摘要: 类芬顿技术是去除水中难降解有机污染物最有应用前景的处理技术之一,构建高效稳定的类芬顿催化剂是其研究的关键。本文采用5 mol/L NaOH溶液在不同温度对Ca-蒙脱土(MMT)进行活化改性,制备了一系列具有不同结构和酸性的碱活化蒙脱土(Alk-MMT),并将Alk-MMT负载铁催化剂(Fe/Alk-MMT)与H2O2组成类芬顿体系用于去除亚甲基蓝(MB)。对所制备的材料进行了XRD、NH3-程序升温脱附(TPD)、XPS、SEM、FTIR、N2吸附-脱附等表征分析。结果表明:与Ca-MMT相比,Alk-MMT的结构和酸性均发生了明显的变化,且变化的程度与碱处理温度密切相关。Alk-MMT结构和酸性的变化明显影响类芬顿体系去除MB的性能。其中以Fe/Alk-MMT-100为催化剂的类芬顿体系在反应温度为50℃,催化剂和H2O2用量分别为1.25 g/L和0.85 mmol/L,在较宽的pH范围(3.0~9.0)反应300 min后MB的去除效率均可达98.7%以上,且表现出较好的稳定性,重复使用6次后,活性未下降。

     

    Abstract: Fenton-like technology is one of the most promising water treatment technologies to remove refractory organic pollutants, and it is the key to construction Fenton-like catalysts with high activity and stability. In this work, a series of alkali-activated montmorillonite (Alk-MMT) with different structure and acidity were prepared via Ca-MMT treated with 5 mol/L NaOH solution at different treatment temperature. Fenton-like system composed with Alk-MMT supported iron catalyst (Fe/Alk-MMT) and H2O2 was used to remove methylene blue (MB). The material was systematically characterized by XRD, NH3-Temperature programmed desorption (TPD), XPS, SEM, FTIR, and N2 adsorption-desorption at low temperature techniques. The results show that the structure and acidity of Alk-MMT are significantly changed compared with Ca-MMT, which is dependent on the alkali treatment temperature. The structure and acidity of Alk-MMT obviously affect the removal performance of MB in Fenton-like system. The Fenton-like system using Fe/Alk-MMT-100 as catalyst exhibits higher removal efficiency of MB (> 98.7%) under the condition of 50℃, the catalyst dosage of 1.25 g/L, the H2O2 concentration of 0.85 mmol/L, and a wide pH (3.0-9.0) range for reacting 300 min. Meanwhile, the activity of the catalyst does not decrease after repeated use for 6 times, which exhibiting a good stability.

     

/

返回文章
返回