Abstract:
Aiming at the technical problems such as low bonding strength, serious warpage and edge cracks in the rolling process of Mg/Al laminated composite, one rolling pass forming with a corrugated roll was studied based on lattice severe deformation rolling (LSDR) principle. The plastic flow law and forming characteristics of the metal plates at complex roll gap were analyzed by finite element numerical calculation, and the rolling experiment was performed. The results show that a series of local strong non-uniform deformation effects distributed as a lattice structure can be applied on the magnesium alloy plate and at the bonding interface by the corrugated roll, and the plastic flow along both rolling direction (RD) and transverse direction (TD) has been strengthened when the LSDR principle is used. Additionally, larger shearing stress can be produced at the bonding interface. Compared with the traditional rolling using flat rolls, the tensile strength, tensile-shear strength and bending strength of the laminated composite prepared on the LSDR principle are significantly improved, and the maximum increase rate of tensile-shear strength obtained reaches 77%. Meanwhile, the bonding interface is uniform and reliable. The diffusion layer is about 5 μm thick. This study provides a valuable reference for the preparation of high-quality Mg/Al laminated composite.