有机相变材料强化及耦合优化电池热管理系统的研究进展

Recent progress in enhancement of physical properties of organic phase change materials and optimization of coupling thermal management of batteries

  • 摘要: 为满足电动汽车锂离子电池热管理需求,具有优良温控效果的相变材料(PCM)冷却逐渐成为研究热点。本文从有机PCM物性不足出发,概括了目前复合有机PCM的制备及改进方向:添加多维高导热材料(如碳材料、纳米金属、泡沫金属等)强化导热;添加共聚物(如聚乙烯、热塑性弹性体等)提高材料柔韧性和添加阻燃剂(如红磷、聚磷酸铵等)提高阻燃效果以改善其实用性。分别指出膨胀石墨、苯乙烯-乙烯-丁二烯-苯乙烯和复合使用红磷与聚磷酸铵对导热、柔性和阻燃的显著提升。同时描述了有机PCM与热管、液冷、空冷等散热方式耦合后系统强化换热的效果,总结耦合热管时需要考虑不同热管排布;耦合液冷或空冷需要设计合适流道增强换热。随后介绍了通过模拟仿真分析有机PCM用于电池热管理系统影响因素及最佳使用工况的研究。最后总结有机PCM用于电池热管理的进展及不足,其难点仍在于其可燃和导电性的改善以及柔性有机PCM在室温下柔韧性不足,有机PCM耦合传统散热系统的车载可靠性和循环可行性也缺乏相应探讨,并为今后有机PCM用于电池热管理提出一定建议。

     

    Abstract: To meet the demand for thermal management of lithium-ion batteries in electric vehicle, the cooling method with phase change materials (PCM) on battery modules has gradually become a research hotspot. Based on the poor physical properties of organic PCM, the preparation and improvement directions of composite organic PCM for battery thermal management (BTM) are summarized, including adding multi-dimensional materials such as carbon materials, nano-metals and metal foams to enhance the heat transfer, and adding copolymer such as polyethylene and thermoplastic elastomer to improve the flexibilities. Additionally, flame retardants such as red phosphorus and ammonium polyphosphate are used to improve the flame retardance for better practicabilities. Among them, expanded graphite, styrene-ethylene-butadiene-styrene, and the composite of red phosphorus and ammonium polyphosphate significantly improve the thermal conductivity, flexibility and flame retardancy respectively. Subsequently, the heat transfer enhancement effects of the system after coupling organic PCM with heat pipe, liquid cooling or air cooling are evaluated, indicating that various arrangements of heat pipe and appropriate flow channels of air and liquid should be considered. Then the optimal operating conditions of organic PCM used in BTM system is determined with numerical calculation. Finally, the progress and shortcomings of organic PCM used in BTM are summarized. It is pointed out that the difficulties of composite organic PCM used in BTM are still accounted for the improvement of flammability and conductivity and the insufficient flexibility of flexible organic PCM at room temperature. Furthermore, the reliability and cycle feasibility of PCM and traditional heat dissipation system in the process of vehicle use are still lack of verification. Totally, several suggestions are put forward for the application of organic PCM in BTM in the future.

     

/

返回文章
返回