Preparation and properties of triple shape memory composites based on trans-polyisopren/poly(ethylene-co-vinyl acetate)
-
摘要: 本文将反式聚异戊二烯(TPI)和乙烯醋酸乙烯酯共聚物(EVA)复合,设计过氧化二异丙苯交联反应连接两相,制备TPI-EVA三重形状记忆复合材料。采用无转子硫化特性曲线、万能试验机、XRD、DSC、动态力学分析(DMA)对TPI-EVA复合材料进行了表征。探究了EVA质量比对TPI-EVA复合材料的力学性能、相结构、结晶性能及三重形状记忆性能的影响。结果表明,随着EVA质量比增加,TPI的结晶温度(Tc)从14.7℃降低至8.2℃,EVA的Tc略有上升。SEM结果表明,随EVA质量比增加,复合材料的相界面由光滑变为粗糙;DMA测试结果表明,EVA比例的增加使样品的第一临时形状固定率从57.6%提升至88.5%。此外,TPI-EVA复合材料表现出优异的力学强度,其中拉伸强度高达30.3 MPa,断裂伸长率达490%。
-
关键词:
- 三重形状记忆效应 /
- 反式聚异戊二烯 /
- 乙烯醋酸乙烯酯共聚物 /
- 结晶性能 /
- 力学性能
Abstract: The TPI-EVA triple shape memory composites were prepared by compounding trans-polyisoprene and poly(ethylene-co-vinyl acetate) (TPI-EVA), and designed cross-linking reaction of dicumyl peroxide to connect the two phases. The TPI-EVA composites were characterized by rheometer, universal testing machine, XRD, DSC and dynamic thermomechanical analyzer (DMA). The effects of the mass ratio of EVA on the mechanical properties, phase structure, crystalline properties and triple shape memory properties of TPI-EVA composites were studied. The results show that with the increase of the mass ratio of EVA, the crystallization temperature (Tc) of TPI decreases from 14.7℃ to 8.2℃, and the Tc of EVA increase slightly. SEM test showed that with the increases of EVA mass ratio, the phase interface of the composites changes from smooth to rough; DMA test shows that the increase of EVA mass ratio increases the first temporary shape memory fixation rate of the samples from 57.6% to 88.5%. Moreover, the TPI-EVA composites exhibit excellent mechanical properties, the tensile strength is as high as 30.3 MPa and the elongation at break reaches 490%. -
齿轮和轴类零件常被用于高速、振动、摩擦磨损等恶劣工况,易产生断裂和磨损等失效[1-2]。此类零件多采用20 CrMnTi低碳钢材料,为提高零件使用寿命,使用电沉积方法在零件表面制备镀层增强零件性能已成为常用方法。Ni-P合金镀层具有良好的耐磨、耐腐蚀性能,还具有较高的硬度,因此被广泛应用于化工、汽车和机械等行业[3-5]。随着行业的进步与发展,Ni-P镀层已难以满足复杂特殊的使用环境,向镀液中添加纳米颗粒针对性的提升镀层性能已成为研究的热门方向[6]。目前一元纳米颗粒复合电沉积技术已比较成熟,如添加Al2O3、WC、SiC等硬质颗粒提升复合镀层的硬度及耐磨损性能[7-10],添加具有自润滑特性的BN(h)、MoS2、PTFE等降低复合镀层的摩擦系数[11-13],添加部分纳米颗粒还可以提高复合镀层的耐腐蚀性能和抗高温氧化性能[14-18]。
近年来部分学者已经对二元纳米颗粒复合镀层进行研究,徐义库[19]等通过脉冲电沉积法制备Ni-Mo-SiC-TiN复合镀层,两种纳米颗粒均匀的分散在Ni-Mo基体中显著提升了镀层的耐磨和耐腐蚀性;张银[20]等使用电沉积法制备不同浓度配比的 Ni-Co-P-BN(h)-Al2O3复合镀层,结果表明二元纳米颗粒掺杂配比会对纳米复合镀层表面产生巨大影响,且二元纳米颗粒复合镀层的耐磨性优于一元纳米颗粒复合涂层;王浩鑫[21]采用单脉冲电沉积制备Ni-TiC-GO复合镀层,该镀层具有优秀的减摩擦和耐磨性能。目前,研究对于二元纳米复合电沉积技术尤其是电沉积Ni-P-WC-BN(h)二元纳米复合镀层的表面结构和减磨耐磨性能的研究未见报道。
因此本文采用超声-脉冲电沉积法制备不同浓度BN(h)纳米颗粒的Ni-P-WC-BN(h)二元纳米颗粒复合镀层,与Ni-P、Ni-P-WC复合镀层对比,探究BN(h)质量浓度对复合镀层组织结构和减磨耐磨性能的影响
1. 实 验
1.1 基材预处理
采用20 CrMnTi钢为基体,其尺寸为40 mm×16 mm×12 mm。表面使用320#、800#、
1200 #、2000#金相砂纸打磨→抛光→去离子水超声清洗→电净除油→去离子水超声清洗并吹干→强活化→去离子水超声清洗并吹干→弱活化→去离子水超声清洗并吹干待用。1.2 实验条件
试验采用单因素实验法,首先通过预实验确定电沉积工艺参数、基础镀液成分(表1所示)和WC颗粒的最优浓度(30 g/L,纯度99.9%,平均粒度为50 nm)。实验装置如图1所示,工艺参数:电流密度3 A/dm2,脉冲频率2 kHz,占空比0.8,镀液温度50℃,电镀时间60 min,超声功率210 W,搅拌速率150 r/min,;阳极为纯Ni板。
表 1 电沉积Ni-P镀液配方Table 1. Formulation of electrodeposition Ni-P plating solutionElement Concentration/(g·L−1) NiSO4·6H2O 230 NiCl2·6H2O 30 H3PO3 5 NaH2PO2·H2O 8 NaC6H8O7·H2O 80 H3BO3 30 C₁₂H₂₅NaSO₄ 0.1 SC(NH₂)₂ 0.02 C₇H₅NO₃S 1 以上述内容为基础向镀液中分别添加15 g/L、20 g/L、25 g/L、30 g/L的BN(h)纳米颗粒(纯度99.9%,平均粒度为200 nm)。探究BN(h)添加量对Ni-P-WC-BN(h)复合镀层表面形貌、组织成分、显微硬度及耐磨性能的影响。
1.3 测试方法
试样制备完成后,使用线切割将样品切割为10 mm×10 mm×6 mm的测试试样进行下一步测试。使用Quanta FEG250扫描电子显微镜、能谱仪X Flash Detector 5030 BRUKER)对试样表面的镀层形貌和元素分布进行观察。采用Rigaku SmartLab SE型X射线衍射仪对复合镀层的物相结构进行分析。采用斯特尔显微硬度仪(Struers)对镀层的显微硬度进行测试,实验载荷
1000 g,加载时间10 s,在不同位置测量五次取平均值。采用CFT-I型综合材料表面性能测试仪(兰州中科凯华科技)对复合镀层的摩擦系数进行测试,磨件为Si3N4对磨球(直径4 mm,表面粗糙度Ra=0.06 μm,硬度为1400 -1700 HV1),加载载荷100 g,往复次数200次/min,往复行程4 mm,时长30 min。采用日本Keyence VK-X1000激光显微镜拍摄磨痕处形貌及磨痕截面轮廓并计算镀层磨损体积损失。2. 结果与讨论
2.1 复合镀层的微观形貌及元素分布
图2展示了不同镀液配方复合镀层的表面微观形貌,(a)图Ni-P镀层表面呈胞状结构,胞状结构的直径较大且分布不均匀。在镀液中加入WC纳米颗粒后,(b)图Ni-P-WC复合镀层表面和(a) Ni-P镀层相比粗糙,这是由于部分WC团聚被Ni-P镀层包裹在镀层内部,镀层表面产生了单元凸起,改变了阳极和阴极的间距,凸起部分受到电场力较大优先生长因此形成不平整的胞状物结构[22]。(c1)到(c4)图为在镀液中进一步添加15 g~30 g/L的BN(h)纳米颗粒的Ni-P-WC-BN(h)复合镀层表面的微观形貌,与Ni-P-WC复合镀层相比,随着BN(h)含量的增加,镀层表面平整度略有提高,究其原因,一方面两颗粒协同作用在一定程度上减小了团聚[20],另一方面还可能与BN(h)颗粒具有自润滑特性,层与层之间靠爱德华力连接易产生滑动有关[23]。但BN(h)浓度超过某一极值,镀液中纳米颗粒浓度过高从而使纳米颗粒团聚,阴极附近导电性下降从而使沉积效率降低。
图 2 复合镀层表面SEM图像 (a) Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 2. SEM image of composite plated surface (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)图3为不同镀液配方复合镀层的截面形貌及元素分布。WC纳米颗粒的加入后镀层厚度有所增加,但镀层内部存在裂痕等缺陷;加入BN(h)纳米颗粒后,镀层平整性略有提高且镀层内部缺陷减少,镀层厚度先增加后减小,在BN(h)浓度为25 g/L时最厚达80.0 μm。随着BN(h)浓度进一步增加,镀液中纳米颗粒浓度过高导致阴极导电性下降从而降低沉积效率,镀层厚度减小。
图 3 复合镀层截面SEM图像及截面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 3. SEM image of composite plating cross-section and section element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)由图中元素分布可以看出,WC和BN(h)纳米镶嵌在镀层中,镀层和基体的界面交界处存在约50 μm的中间区,该区域元素相互渗透,有助于改善镀层和基体的结合。
图4为不同镀镀液配方复合镀层表面元素分布,从元素分布图中可以看出Ni、P、W、B均匀分散在镀层中,并无明显团聚现象,这说明在该工艺参数下WC纳米颗粒和BN(h)纳米颗粒在镀层中分散效果较好。
图 4 复合镀层表面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 4. Composite plating surface element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)2.2 复合镀层的EDS能谱及相结构
图5为二元纳米颗粒掺杂下Ni-P-WC-BN(h)复合镀层的EDS能谱图,从图中可以看出,所制备的二元纳米复合镀层表面均含有Ni、P、W、C、B等元素,各元素含量随着BN(h)浓度的变化而变化。随着BN(h)添加量从15 g/L增加到30 g/L,B元素质量分数呈先波动增大后减小趋势,在BN(h)浓度为25 g/L时B元素的质量分数达到最大值0.85%;镀层表面W元素质量分数先减小后增大,与B元素呈相反趋势;镀层中P元素质量分数逐渐减小。这说明通过超声-脉冲电沉积法制备了Ni-P-WC-BN(h)二元纳米复合镀层。Ni元素的质量分数随着BN(h)浓度的提升而增大,这是因为镀液中加入WC和BN(h)两种纳米颗粒后,不同纳米颗粒相互作用,减小团聚,镀层表面吸附的颗粒数目增加,为Ni原子提供更好的成核条件[23],从而增大Ni元素的沉积量。
图6所示为不同复合镀层的XRD图谱,镀层在2θ为44.507°、51.846°、76.370°的位置上出现了的Ni峰,分别对应(111)、(200)、(220)晶面,与Ni-P-WC复合镀层相比,随着BN(h)浓度的增加,Ni-P-WC-BN(h)复合镀层的三个晶面方向出现了明显的结晶取向,且生长晶面以(111)面为主,这是由于Ni的结晶取向同时受到生长速度、方向的影响外还受到晶体竞争模式的影响[24];Ni-P-WC复合镀层的衍射图谱中,2θ为31.474°、35.626°、48.266°的位置出现了WC的特征峰,这说明WC颗粒成功沉积在复合镀层中;在Ni-P-WC-BN(h)复合镀层的衍射图谱中并没有表现出明显的BN(h)峰,但是可以检测到BN(h),结合图5中B元素的质量分数可知这可能是BN(h)颗粒沉积量较少所致。
表2为不同配方镀层中Ni(111)元素的晶粒尺寸数据,其中FWHM为半幅宽,D为镀层中垂直于晶面的晶粒尺寸。随着BN(h)浓度的提升,Ni(111)的晶粒尺寸先减小后增大,最小晶粒尺寸为8.9 nm,这是因为BN(h)对晶粒有一定的细化作用[25],合适浓度的BN(h)可以减小晶粒尺寸,但是BN(h)浓度过高会使晶粒尺寸增大。
表 2 不同复合镀层中Ni(111)元素的晶粒尺寸Table 2. Grain size of Ni(111) elements in different composite coatingsType of plating 2θ/(°) FWHM Diameter/nm Ni-P 44.480 0.941 9.2 Ni-P-WC 44.670 0.848 10.2 Ni-P-WC-BN(h)(15 g/L) 44.480 0.894 9.7 Ni-P-WC-BN(h)(20 g/L) 44.340 0.908 9.5 Ni-P-WC-BN(h)(25 g/L) 44.660 0.968 8.9 Ni-P-WC-BN(h)(30 g/L) 44.710 0.677 12.8 2.3 复合镀层的硬度
不同复合镀层的显微硬度测试结果如图7所示,从图中可知,Ni-P镀层硬度在700 HV1左右,添加WC纳米颗粒后镀层的显微硬度为
1141 HV1,这是因为WC在镀层中弥散分布,对镀层起到弥散强化作用[26],根据晶界强化原理,晶粒越细小镀层的显微硬度越高,WC纳米颗粒自身硬度较高且可以使镀层晶粒细化从而提高硬度。加入BN(h)后,随着BN(h)浓度从15 g/L到30 g/L的过程中,Ni-P-WC-BN(h)复合镀层硬度呈先增大后减小的变化趋势,在BN(h)浓度为25 g/L时Ni-P-WC-BN(h)复合镀层的硬度达到最大值115 6HV1,硬度最大值与Ni-P-WC复合镀层相当。分析认为, 纳米粒子在沉积过程中分为弱吸附和强吸附[27],随着镀液中纳米颗粒浓度增加,更多的颗粒发生强吸附作用,从而使镀层中纳米颗粒的含量增加从而使镀层硬度提升,但当其添加量过大时镀层易产生析氢现象[28],使镀层厚度下降,因此硬度下降。2.4 复合镀层的减磨耐磨性能
不同配方复合镀层的摩擦系数如图8所示,各复合镀层的摩擦系数均存在明显的摩擦系数急剧上升后趋于平稳的“磨合”阶段[29]。分析认为随着磨损试验的进行镀层表面的磨屑不断在磨痕处堆积,最终在压应力的作用下产生塑性变形使摩擦阻力增大,从而导致摩擦系数增大。
相同条件下,未添加纳米颗粒的Ni-P镀层的摩擦系数较大。摩擦系数和复合镀层中的硬质颗粒的尺寸、均匀性和数量有关[30],添加WC纳米颗粒后,纳米WC嵌入镀层,使晶粒细化并致密镀层组织,且WC自身硬度较高,因此可以减小摩擦时的接触面积从而降低摩擦系数。在Ni-P-WC镀层基础上添加BN(h)颗粒,随着BN(h)浓度增加,Ni-P-WC-BN(h)复合镀层摩擦系数呈先减小后增大的变化趋势。
摩擦磨损实验结束后,各镀层的磨损体积如表3所示,由数据可以看出Ni-P镀层磨损体积最大;加入WC纳米颗粒后镀层的磨损体积显著减小;加入BN(h)纳米颗粒后,随着浓度的提升,复合镀层的磨损量先减小后增大,Ni-P-WC-BN(h)(25 g/L)复合镀层的磨损体积最小,与Ni-P-WC复合镀层相当,显著优于其他镀层。将磨损体积与图5硬度测试结果对比,可以得出镀层磨损量和镀层硬度呈负相关。
表 3 镀层磨损体积Table 3. Plating wear volumeType of plating Wear volume /μm3 Ni-P 459553 Ni-P-WC 51945 Ni-P-WC-BN(h)(15 g/L) 256137 Ni-P-WC-BN(h)(20 g/L) 135765 Ni-P-WC-BN(h)(25 g/L) 53587 Ni-P-WC-BN(h)(30 g/L) 102966 各镀层磨痕形貌、轮廓线如图9所示,不同区域元素分布如表4所示。由磨痕形貌与图3镀层厚度对比及磨痕元素分布可知,磨损区域均不含Fe元素,摩擦磨损试验过程中镀层并未磨穿。Ni-P镀层磨痕与其他镀层磨痕相比较为明显,且磨痕处呈明显的黏着现象和犁沟状形貌,取磨痕中部长度为310 μm的截面轮廓线可知磨损过程中Ni-P复合镀层的磨损量较大,Ni-P涂层的硬度较低,易产生剥落现象,磨痕处含有少量Si元素,这说明Si3N4对磨球在摩擦磨损试验中摩擦热的作用下转移到镀层表面产生黏着磨损现象。镀层中加入WC纳米颗粒后,Ni-P-WC复合镀层磨痕表面无明显的犁沟形貌,这是因为WC颗粒在镀层中起到弥散强化作用,大幅度提升了复合镀层的硬度,减小了摩擦的接触面积,在磨损过程中,镀层先产生塑形形变,当形变量过大时部分WC颗粒脱落,形成镀层、WC粉末、摩擦副之间的三体磨损[31],此过程中摩擦热大幅增加导致氧化磨损,涂层的氧含量大幅提高。
图 9 复合镀层磨痕SEM(左)、磨痕形貌(中)、磨痕轮廓线(右):(a)Ni-P (b)Ni-P-WC (c)Ni-P-WC-BN(h)(15 g/L) (d)Ni-P-WC-BN(h)(20 g/L) (e)Ni-P-WC-BN(h)(25 g/L) (f)Ni-P-WC-BN(h)(30 g/L)Figure 9. SEM of composite plating wear marks (left), wear mark morphology (center), and wear mark contour lines (right): (a) Ni-P (b) Ni-P-WC (c) Ni-P-WC-BN(h)(15 g/L) (d) Ni-P-WC-BN(h)(20 g/L) (e) Ni-P-WC-BN(h)(25 g/L) (f) Ni-P-WC-BN(h)(30 g/L)表 4 磨痕元素分布Table 4. Distribution of abrasion elementsArea Atomic fraction of an element at% Ni O P Si W B Au 1 75.01 14.08 5.15 2.71 — — 2.34 2 90.1 — 6.4 — — — 3.49 3 23.16 70.39 1.49 — 2.87 — 1.28 4 84.64 2.48 3.43 — 6.14 — 3.31 5 56.59 31.00 3.36 1.35 5.41 0.35 1.93 6 63.12 4.00 3.58 — 3.13 23.59 2.60 7 37.49 53.33 2.07 1.16 3.40 0.76 1.79 8 37.68 52.95 2.56 1.06 4.05 0.2 1.50 9 66.25 9.97 4.38 0.01 4.05 14.04 1.29 10 72.42 15.68 3.59 0.15 5.63 0.13 2.42 11 58.76 7.96 3.03 0.11 4.56 20.69 4.88 12 46.65 27.96 1.23 4.89 4.47 8.99 5.82 BN(h)纳米颗粒加入后磨痕形貌如图9(c)-(f)所示,BN(h)添加量为15 g/L时,对比图8中摩擦系数曲线及磨痕处轮廓线可以发现Ni-P-WC-BN(h)(15 g/L)复合镀层发生了较为严重的剥落现象,剥落的镀层在磨痕处随摩擦副一起在镀层表面摩擦,从而导致摩擦系数短时内上升,随着摩擦实验的进行,剥落的镀层被压应力压碎,摩擦系数也逐渐减小到该涂层的正常水平;BN(h)添加量为20 g/L时,镀层的剥落现象大幅减少,磨痕处的Si元素含量增加,镀层存在黏着磨损现象,此时摩擦系数略小于Ni-P-WC复合镀层,但是由于BN(h)沉积量较少,因此减磨能力有限;BN(h)添加量为25 g/L时,镀层基本无剥落现象,磨痕较为平整,这是因为BN(h)微粒在镀层中和WC共沉积,呈弥散分布,由于BN(h)为六方结构,层与层之间靠范德华力连接,在摩擦中易产生滑动,一方面滑动的BN(h)可以在镀层和对磨球间形成固体润滑膜减小摩擦,另一方面BN(h)可以在摩擦过程中填补磨痕处的缺陷,使磨痕更加平整,此时摩擦形式为磨料磨损,伴随极微的黏着磨损;BN(h)添加量为30 g/L时,磨痕呈现较为明显的犁沟状并伴随着严重的黏着现象,此时纳米浓度颗粒浓度过高,电沉积效率下降,镀层硬度和厚度减小,镀层中Si元素含量大幅提高,镀层主要磨损形式为黏着磨损。
3. 结 论
(1)不同纳米颗粒的质量浓度对纳米复合镀层表面的微观形貌和物相结构有重要影响,Ni-P镀层表面呈现明显的胞状结构;加入WC纳米颗粒后,Ni-P-WC复合镀层表面呈不平整“菜花”状形貌;加入BN(h)纳米颗粒后,Ni-P-WC-BN(h)复合镀层微观形貌无明显变化,镀层平均晶粒尺寸先减小后增大,合适浓度的BN(h)对晶粒有一定的细化作用。
(2)试验范围内,纳米颗粒的添加可以有效的提升复合镀层的显微硬度和厚度。Ni-P-WC和Ni-P-WC-BN(h)(25 g/L)复合镀层硬度最大,平均硬度达到
1150 HV1,纳米颗粒浓度过低或者过高均会降低镀层的显微硬度。(3)试验范围内,Ni-P镀层在摩擦磨损实验中存在较为严重的黏着和剥落现象且磨损量较大;加入WC纳米颗粒后,镀层无黏着现象,磨损形式为磨料磨损和氧化磨损,此时摩擦系数较小且磨损量较低;进一步加入BN(h)纳米颗粒后,随着BN(h)浓度的提升,镀层的摩擦系数和磨损量先减小后增大,在BN(h)质量浓度为25 g/L时镀层的摩擦系数最低,在保证镀态高硬度的同时,摩擦系数较Ni-P-WC复合镀层降低22.6%,这说明二元纳米颗粒掺杂发挥了协同生长的优势,具有更好的减磨耐磨性能。
-
图 4 不同TPI-EVA比例的复合材料的动态力学分析(DMA)曲线:(a) T9E1;(b) T8E2;(c) T7E3;(d) T6E4;(e) T5E5
Figure 4. Dynamic mechanical analysis (DMA) curves of the TPI-EVA composites with different ratios: (a) T9E1; (b) T8E2; (c) T7E3; (d) T6E4; (e) T5E5
S1,load, S2,load—Strain corresponding to the first stress applied and the second stress applied; S1,rec, S2,rec—Increase the temperature to 55℃ and 105℃ in sequence to restore the strain of the sample; S0—Initial strain; S1, S2—Final deformation of the sample after stress is applied
表 1 TPI-EVA复合材料配方
Table 1 Formulation of TPI-EVA composites
Sample code TPI/g EVA/g T10 100 0 T9E1 90 10 T8E2 80 20 T7E3 70 30 T6E4 60 40 T5E5 50 50 Notes: TPI—Trans-polyisoprene; EVA—Poly(ethylene-co-vinyl acetate). 2 g of stearic acid, 8 g of zinc oxide and 1 g of dicumyl peroxide were added. 表 2 不同TPI-EVA比例复合材料在175℃下硫化特性参数
Table 2 Vulcanization characteristic parameters of TPI-EVA composites with different ratios at 175℃
Properties T10 T9E1 T8E2 T7E3 T6E4 T5E5 MH/(dN·m) 3.77 3.15 2.69 2.53 1.58 1.30 ML/(dN·m) 0.37 0.27 0.14 0.47 0.00 0.00 MH−ML/(dN·m) 3.40 2.88 2.55 2.06 1.58 1.30 T90/min 4.03 4.17 4.39 5:04 5.12 5.39 Cure rate index/min−1 28.4 26.4 24.4 22.6 21.2 21.0 Notes: MH—Maximum torque; ML—Minimum torque; T90—Optimum curing time. 表 3 不同TPI-EVA比例的复合材料的三重形状记忆性能
Table 3 Tripe shape memory properties of the TPI-EVA composites with different ratios
Sample code Rf(0→1)/% Rf(1→2)/% Rr(2→1)/% Rr(1→0)/% T8E2 57.6 99.0 79.6 99.8 T7E3 66.9 98.1 79.2 100.0 T6E4 77.9 97.6 78.9 99.9 T5E5 88.5 97.1 77.2 75.1 Notes: Rf—Shape fixity ratio; Rr—Shape recovery ratio. -
[1] WANG F, ZHANG C, TAN A, et al. Photothermal and magnetocaloric-stimulated shape memory and self-healing via magnetic polymeric composite with dynamic crosslinking[J]. Polymer,2021,223:123677. DOI: 10.1016/j.polymer.2021.123677
[2] LIU Y J, LV H B, LAN X, et al. Review of electro-active shape-memory polymer composite[J]. Composites Science and Technology,2009,69(13):2064-2068. DOI: 10.1016/j.compscitech.2008.08.016
[3] SONG Q, CHEN H, ZHOU S, et al. Thermo- and pH-sensitive shape memory polyurethane containing carboxyl groups[J]. Polymer Chemistry,2016,7(9):1739-1746. DOI: 10.1039/C5PY02010G
[4] XIAO X L, KONG D Y, QIU X Y, et al. Shape-memory polymers with adjustable high glass transition temperatures[J]. Macromolecules,2015,48(11):3582-3589. DOI: 10.1021/acs.macromol.5b00654
[5] YANDE C, DONG L, CHEN G, et al. Bioinspired shape memory hydrogel artificial muscles driven by solvents[J]. ACS Nano,2021,15(8):13712-13720. DOI: 10.1021/acsnano.1c05019
[6] ZHANG H J, XIA H S, ZHAO Y. Light-controlled complex deformation and motion of shape-memory polymers using a temperature gradient[J]. ACS Macro Letters,2014,3(9):940-943. DOI: 10.1021/mz500520b
[7] LI Z, ZHANG X, WANG S, et al. Polydopamine coated shape memory polymer: Enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization[J]. Chemical Science,2016,7(7):4741-4747. DOI: 10.1039/C6SC00584E
[8] ZHANG F H, ZHANG Z C, LUO C J, et al. Remote, fast actuation of programmable multiple shape memory composites by magnetic fields[J]. Journal of Materials Chemistry C,2015,3(43):11290-11293. DOI: 10.1039/C5TC02464A
[9] KARASU F, WEDER C. Blends of poly(ester urethane)s and polyesters as a general design approach for triple-shape memory polymers[J]. Journal of Applied Polymer Science,2020,138(9):49935.
[10] DELAEY J, DUBRUEL P, VAN VLIERBERGHE S. Shape-memory polymers for biomedical applications[J]. Advanced Functional Materials,2020,30(44):1909047. DOI: 10.1002/adfm.201909047
[11] XU C, ZHENG Z, LIN M, et al. Strengthened, antibacterial, and conductive flexible film for humidity and strain sensors[J]. ACS Applied Materials & Interfaces,2020,12(31):35482-35492. DOI: 10.1021/acsami.0c10101
[12] ARUN D I, KUMAR K S S, KUMAR B S, et al. High glass-transition polyurethane-carbon black electro-active shape memory nanocomposite for aerospace systems[J]. Materials Science and Technology,2019,35(5):596-605. DOI: 10.1080/02670836.2019.1575054
[13] ALSHEBLY Y S, NAFEA M, MOHAMED ALI M S, et al. Review on recent advances in 4D printing of shape memory polymers[J]. European Polymer Journal,2021,159:110708. DOI: 10.1016/j.eurpolymj.2021.110708
[14] RAMARAJU H, AKMAN R E, SAFRANSKI D L, et al. Designing biodegradable shape memory polymers for tissue repair[J]. Advanced Functional Materials,2020,30(44):2002014. DOI: 10.1002/adfm.202002014
[15] ZHENG X Y, ZHOU B, XUE S F. A viscoelastic-plastic constitutive model of shape memory polymer[J]. Journal of Mechanics,2019,35(5):601-611. DOI: 10.1017/jmech.2018.56
[16] HUANG Y N, FAN L F, RONG M Z, et al. External stress-free reversible multiple shape memory polymers[J]. ACS Applied Materials & Interfaces,2019,11(34):31346-31355. DOI: 10.1021/acsami.9b10052
[17] NIE J, HUANG J, FAN J, et al. Strengthened, self-healing, and conductive ENR-based composites based on multiple hydrogen bonding interactions[J]. ACS Sustainable Chemistry & Engineering,2020,8(36):13724-13733.
[18] ZHENG Y, JI X, YIN M, et al. Strategy for fabricating multiple-shape-memory polymeric materials via the multilayer assembly of co-continuous blends[J]. ACS Applied Materials & Interfaces,2017,9(37):32270-32279. DOI: 10.1021/acsami.7b10345
[19] 严瑞芳. 一种古老而又年轻的天然高分子—杜仲胶[J]. 高分子通报, 1989(2):39-44. YAN Ruifang. An age-old and young natural polymer—Gutta-percha[J]. Polymer Bulletin,1989(2):39-44(in Chinese).
[20] 张继川, 薛兆弘, 严瑞芳, 等. 天然高分子材料—杜仲胶的研究进展[J]. 高分子学报, 2011(10):1105-1117. ZHANG Jichuan, XUE Zhaohong, YAN Ruifang, et al. Natural polymer material—Recent studies on eucommia ulmoides gum[J]. Acta Polymerica Sinica,2011(10):1105-1117(in Chinese).
[21] WANG Y, PEI X, XIA L, et al. Covalent crosslinks turn natural Eucommia ulmoides gum/polybutene-1 composites into multiple shape memory materials[J]. Polymer Composites,2021,43(3):1371-1382.
[22] KANG H, GONG M, XU M, et al. Fabricated biobased eucommia ulmoides gum/polyolefin elastomer thermoplastic vulcanizates into a shape memory material[J]. Industrial & Engineering Chemistry Research,2019,58(16):6375-6384.
[23] QI X, ZHAO X, LI Y, et al. A high toughness elastomer based on natural Eucommia ulmoides gum[J]. Journal of Applied Polymer Science,2020,138(11):50007.
[24] WANG Y, LIU J, XIA L, et al. Fully biobased shape memory thermoplastic vulcanizates from poly(lactic acid) and modified natural Eucommia ulmoides gum with co-continuous structure and super toughness[J]. Polymers (Basel),2019,11(12):2040. DOI: 10.3390/polym11122040
[25] TIAN M, GAO W, HU J, et al. Multidirectional triple-shape-memory polymer by tunable cross-linking and crystallization[J]. ACS Applied Materials & Interfaces,2020,12(5):6426-6435.
[26] WANG Y, XIA L, XIN Z. Triple shape memory effect of foamed natural Eucommia ulmoides gum/high density polyethylene composites[J]. Polymers for Advanced Technologies,2018,29(1):190-197. DOI: 10.1002/pat.4102
[27] HAN J L, LAI S M, CHIU Y T. Two-way multi-shape memory properties of peroxide crosslinked ethylene vinyl-acetate copolymer (EVA)/polycaprolactone (PCL) blends[J]. Polymers for Advanced Technologies,2018,29(7):2010-2024. DOI: 10.1002/pat.4309
[28] GU P, ZHANG J. Vinyl acetate content influence on thermal, non-isothermal crystallization, and optical characteristics of ethylenevinyl acetate copolymers[J]. Iranian Polymer Journal,2022,31:905-917. DOI: 10.1007/s13726-022-01048-6
[29] HAO C, WANG K, WANG Z, et al. Triple one-way and two-way shape memory poly(ethylene-co-vinyl acetate)/poly(ε-caprolactone) immiscible blends[J]. Journal of Applied Polymer Science,2021,139(1):51426.
[30] LAI S M, LI C H, KAO H C, et al. Shape memory properties of melt-blended olefin block copolymer (OBC)/ethylene-vinyl acetate blends[J]. Journal of Macromolecular Science, Part B,2019,58(1):174-191. DOI: 10.1080/00222348.2018.1558593
[31] QI X M, DONG Y B, ISLAM M Z, et al. Excellent triple-shape memory effect and superior recovery stress of ethylene-vinyl acetate copolymer fiber[J]. Composites Science and Technology,2021,203:108609. DOI: 10.1016/j.compscitech.2020.108609
-
期刊类型引用(12)
1. 贾宝惠,任鹏,宋挺,崔开心,肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响. 材料导报. 2024(05): 246-252 . 百度学术
2. 张宇,郭盼盼,熊婕,黄峰,王波. 循环湿热环境对树脂基复合材料弯曲性能的影响. 科学咨询(科技·管理). 2024(02): 135-138 . 百度学术
3. 牛存洋,寿文凯,顾海萍,孔德良. 以价值观为导向的生态学课程思政教学设计——以种群生活史对策为例. 科学咨询(教育科研). 2024(03): 134-137 . 百度学术
4. 刘鸿森,黄凯,黄金钊,韩晓剑,逯浩,骆杨,张莉,果立成. 考虑温度效应的复合材料紧固结构面外拉脱性能和失效机制. 复合材料学报. 2024(09): 4778-4790 . 本站查看
5. 王慧敏,任亮,范微微,陈阳,孙丽. 基于锥体结构复合材料制品布带缠绕成型关键工艺参数优化. 宇航材料工艺. 2024(05): 87-92 . 百度学术
6. 樊俊铃,马国庆,焦婷,陈曾美,韩啸. 温度和湿度对碳纤维增强复合材料老化影响研究综述. 航空科学技术. 2023(09): 1-13 . 百度学术
7. 刘宋婧,冯宇,张腾,毕亚萍,张铁军. 航空复合材料加筋板湿热环境下吸湿性能. 航空动力学报. 2023(09): 2231-2240 . 百度学术
8. 王静,程健,肖存勇,贾松,任荣,熊需海. 先进聚合物基复合材料超声焊接研究进展. 高分子材料科学与工程. 2023(09): 166-173 . 百度学术
9. 蒋平,吕太勇,吴丽华,José Pérez-Rigueiro,胡梦蕾,徐丽萍,黄诗怡,王安萍,郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异. 材料导报. 2023(23): 237-245 . 百度学术
10. 吴志猛. 聚四氟乙烯芳纶1313纤维树脂基复合材料的摩擦学性能研究. 化学工程与装备. 2022(09): 40-41+44 . 百度学术
11. 王志平,陈灏,路鹏程. 电-湿耦合作用下碳纤维增强树脂基复合材料损伤机制. 中国塑料. 2022(10): 39-45 . 百度学术
12. 史超帆,陈叔平,王洋,金树峰,于洋,何远新,杨帅,熊珍艳,史庆智. 纤维方向对环氧树脂/玻纤复合材料导热性能影响. 工程塑料应用. 2022(11): 108-116 . 百度学术
其他类型引用(9)
-
目的
形状记忆聚合物由于其独特的应变响应行为,在可变形机器人、柔性器件、生物医学、航空航天结构等领域展现出独特的优势。针对目前热固性形状记忆聚合物脆性大、临时形状个数局限于一个等问题,本文将反式聚异戊二烯(TPI)和乙烯醋酸乙烯酯共聚物(EVA)复合,探索不同比例的复合材料结构与性能的关系。
方法利用反式聚异戊二烯(TPI)和乙烯醋酸乙烯酯共聚物(EVA)先物理复合,后化学交联的策略,采用转子硫化特性曲线、万能试验机、XRD、DSC、DMA对TPI-EVA复合材料的性能进行表征。首先,将计量好的杜仲胶(TPI)在70℃的开放式炼胶机塑炼3-5min,待胶料包辊之后,依次加入防老剂4010NA、硬脂酸、氧化锌,混和均匀;接着分批次加入乙烯醋酸乙烯共聚物(EVA);最后加入过氧化二异丙苯(DCP)。待混和均匀后,调至合适辊距,停放24h。将混炼胶置于平板硫化机中,在175℃、10MPa的条件下,取正硫化时间(T)硫化。关于化学交联反应的发生,主要是过氧化物受热分解成为自由基,自由基进攻杜仲胶(TPI)上大量的双键以及乙烯醋酸乙烯酯共聚物(EVA)上的活泼氢,从而形成交联网络。
结果本文通过探究了TPI与EVA比例对复合材料的硫化特性参数、结晶性能、力学性能以及三重形状记忆等性能的影响。①利用无转子硫化仪确定了相关硫化特性参数。随着EVA含量的增加,复合材料的表观交联密度下降,正硫化时间延长。②采用XRD、DSC确定了TPI-EVA复合材料的结晶性能。两相之间并没有形成新的结晶区域,且确定了三重形状记忆的固定温度和恢复温度。③利用DMA验证了TPI-EVA复合材料的三重形状记忆行为,结果表明随着EVA质量比的增加,第一临时形状固定率增加,第二临时形状固定率最低为97.1%,表现出较好的三重形状记忆功能。④利用SEM验证TPI-EVA的相界面。结果表明,随着EVA质量比增加,两相界面由平滑到粗糙,当EVA质量比超过40%,两相分离的趋势增大,拉伸强度下降至14.4MPa。从研究结果可以得出TPI/EVA三重形状记忆的机制,在室温的时候,复合材料内存在两种区域,分别是结晶区域以及交联网络区域,结晶区域控制着复合材料的形状固定,而交联网络负责复合材料的形状恢复。当升高温度至105℃时,复合材料结晶区域全部处于熔化状态,试样可以很容易拉伸,而后保持应力的同时,降温至55℃后撤去应力,此时,EVA的链段因为温度降低至Tc以下形成晶区,而TPI处于熔融状态,再次施加外力使复合材料在55℃下再次发生形变,后迅速降温至0℃撤去应力,此时TPI沿着力的作用方向发生取向且因为温度降低导致结晶。通过施加两次外力将力存储在了EVA的结晶区域和TPI的结晶区域。当温度升高至55℃时,TPI的结晶区域熔化,因为内部的交联网络的熵增大,复合材料的第二临时形状恢复为第一临时形状;当温度升高至105℃时,EVA的结晶区域熔化,复合材料恢复为初始形状。
结论本文通过TPI与EVA物理复合,化学交联策略构建的热固性复合材料,其实质是采用两结晶温度不同的聚合物达到三重形状记忆的效果,用化学交联提供形状记忆的驱动力。相比于化学合成的方法,采用该策略制造成本低,可进行商业化生产。另外,可以通过控制TPI与EVA的比例,可以调节三重形状记忆复合材料的形状固定率和恢复率。
-
三重形状记忆材料以其可调节性、多种刺激和多功能性,广泛应用于传感器、航空航天、4D打印及生物医学等领域。但由于材料内部存在相分离,导致其断裂伸长率较差,严重阻碍了它的实际应用。
本文采用TPI和EVA复合,设计过氧化二异丙苯交联反应增强其相容性,制备出具有三重形状记忆功能的复合材料。探究了TPI与EVA比例对TPI-EVA复合材料的力学性能、相结构、结晶性能以及三重形状记忆性能的影响。结果表明,随着EVA质量比增加,TPI的结晶温度(Tc)从14.7℃降低至8.2℃,EVA的Tc略有上升。SEM结果表明,随EVA质量比增加,复合材料的相界面由光滑变为粗糙;DMA测试结果表明,EVA比例的增加使样品的第一临时形状固定率从57.6%提升至88.5%。此外,TPI-EVA复合材料表现出优异的力学强度,其中拉伸强度高达30.3MPa,断裂伸长率达490%。所制备的TPI-EVA复合材料可用于机器人、致动器以及生物医学应用领域。这项工作有助于设计具有良好相容性的三重形状记忆聚合物,为传统商业聚合物的实际应用奠定了基础。
(a) TPI-EVA三重形状记忆复合材料的DMA图,(b) 复合材料力学性能图以及(c)三重形状记忆宏观恢复图