绣球荚蒾状硫化钴@富氮炭的设计与构建及超级电容性能

Design and fabrication of hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon for high-performance supercapacitors

  • 摘要: 本文采用简单的溶剂热法制备了一种独特的具有大量电化学活性位点的绣球荚蒾状硫化钴(HVCS)。接着通过原位聚合将聚苯胺(PANI)组装到HVCS表面,最后将聚苯胺进一步碳化,得到绣球荚蒾状硫化钴@富氮炭复合材料(HVCS@NC)。得益于独特的微观结构设计和两组分电化学性能优势的互补,电化学分析表明制备所得HVCS@NC纳米复合电极具有理想的超级电容器电化学性能。该材料在电流密度为1 A·g−1时展现出622 F·g−1的比电容值,以HVCS@NC和活性炭(AC)分别作正极和负极组装的不对称超级电容器,在功率密度为1912.3 W·kg−1时能量密度达19.9 W·h·kg−1。研究表明:将导电高分子PANI定位组装在具有特殊微观形貌结构硫化钴表面并碳化的工艺可以获得高性能硫化物基超级电容器电极材料,聚苯胺的可塑性及碳化处理后富含氮元素的特性对于改善过渡金属硫化物的电化学性能具有很大优势,这种结构设计策略可以潜在地扩展并应用到其他过渡金属硫化物基超级电容器电极材料的电化学性能提升。

     

    Abstract: A unique hydrangea viburnum-like cobalt sulfide (HVCS) with multiple electrochemically active sites was successfully fabricated by a simple solvent thermal method. Polyaniline (PANI) was assembled onto the surface of HVCS through in situ polymerization and finally PANI were further carbonized to obtain hydrangea viburnum-like cobalt sulfide@nitrogen-rich carbon composite (HVCS@NC). Benefiting from the unique microstructure design and synergistic effect produced through the complementary properties of the two components, the fabricated HVCS@NC electrode demonstrates ideal electrochemical performance for supercapacitors through electrochemical analysis. The material exhibits an outstanding capacitive performance of 622 F·g−1 at a current density of 1 A·g−1 and the assembled asymmetric supercapacitor with HVCS@NC and active carbon (AC) as positive and negative electrodes, respectively, achieves a high specific energy of 19.9 W·h·kg−1 at a specific power of 1912.3 W·kg−1. All results show that high-performance supercapacitor electrode materials can be obtained by assembling conductive polymers on the surface of novel cobalt sulfide with special microscopic morphology and structure and then carbonizing. The plasticity and nitrogen-rich properties after carbonization of polyaniline have great advantages for improving the electrochemical performance of transition metal sulfide. This structural design strategy can be potentially extended to the improvement of electrochemical properties of other transition metal sulfide based electrode materials.

     

/

返回文章
返回