混合金属氧化物在废水处理中的应用研究综述

朱巧灵, 赵晓丹, 刘成瑞, 王正江, 蓝紫薇, 周振

朱巧灵, 赵晓丹, 刘成瑞, 等. 混合金属氧化物在废水处理中的应用研究综述[J]. 复合材料学报, 2023, 40(6): 3255-3269. DOI: 10.13801/j.cnki.fhclxb.20221005.001
引用本文: 朱巧灵, 赵晓丹, 刘成瑞, 等. 混合金属氧化物在废水处理中的应用研究综述[J]. 复合材料学报, 2023, 40(6): 3255-3269. DOI: 10.13801/j.cnki.fhclxb.20221005.001
ZHU Qiaoling, ZHAO Xiaodan, LIU Chengrui, et al. Recent development and application of mixed metal oxides in wastewater treatment: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3255-3269. DOI: 10.13801/j.cnki.fhclxb.20221005.001
Citation: ZHU Qiaoling, ZHAO Xiaodan, LIU Chengrui, et al. Recent development and application of mixed metal oxides in wastewater treatment: A review[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3255-3269. DOI: 10.13801/j.cnki.fhclxb.20221005.001

混合金属氧化物在废水处理中的应用研究综述

基金项目: 国家自然科学基金(51878403);上海市曙光计划项目(19SG49)
详细信息
    通讯作者:

    赵晓丹,博士,副教授,硕士生导师,研究方向为水处理技术 E-mail: zhaoxiaodan@shiep.edu.cn

  • 中图分类号: TB331

Recent development and application of mixed metal oxides in wastewater treatment: A review

Funds: National Natural Science Foundation of China (51878403); Dawn Program of Shanghai Education Commission (19SG49)
  • 摘要: 混合金属氧化物(Mixed metal oxide,MMO),即一种以上金属的氧化物,因其在水中结构的独特变化,能展现出较强的吸附性能和催化活性,在废水处理方面具有极大应用潜力。本文综述了MMO的制备方法,主要可分为固相烧结法、聚合物前驱体焙烧法、层状双金属氢氧化物(Layered double hydroxides,LDHs)前驱体焙烧法、化学共沉淀法和水热法5种,并详细介绍了通过改变这些合成方法与合成条件实现的MMO元素组成、元素比例、形貌结构等的控制,以调控其性质性能。系统分析了MMO在去除重金属、类金属、有机污染物和阴离子方面的主要机制及研究进展,其中主要机制为在MMO结构重组过程中,伴随有吸附、催化及其协同作用。得益于这3种机制MMO不仅能实现单一污染物的高效脱除,还能实现多污染物的同步去除,在废水处理方面有着显著成效,但目前大多数研究仍停留在实验阶段,在实际废水处理及工程应用上的研究尚少。
    Abstract: Mixed metal oxides (MMO) containing more than one type of metal, have shown great application potential to be adsorbents and catalysts due to their unique structural changes in water. Therefore, they have great potential in wastewater treatment. In this paper, the preparation methods of MMO are described, including solid-phase sintering, polymeric precursor calcination, layered double hydroxides precursor calcination, chemical coprecipitation and hydrothermal methods, and control methods of the element composition, element proportion, and structure of MMO to regulate their properties by changing these synthesis methods and conditions are introduced in detail. The main mechanisms of MMO in the removal of heavy metals, metalloids, organic pollutants and anionic are comprehensively analyzed which can be summarized as: in the process of structural reorganization of MMO, adsorption, catalysis and their synergy are accompanied. MMO can not only remove single pollutants efficiently, but also remove multiple pollutants simultaneously due to these three effects, so MMO have significant effects in effluent treatment, but at present most of the research is still at the experimental stage, and there are few studies on effluent treatment and engineering applications.
  • 表面活性剂是同时具有疏水基团和亲水基团的两亲性化合物,具有乳化、破乳、分散、絮凝、润湿、铺展、起泡、消泡、洗涤和杀菌等功能,被广泛应用于科学研究及石油开采、乳液聚合、食品、农业、纺织等工业领域[1-4]。出于合成角度考虑,一般希望得到结构稳定的表面活性剂,然而,在大多数实际应用中,表面活性剂往往只被需要在某一阶段发挥作用,当过程结束后,需要其失去活性或者从体系中轻易取出以减少残留导致的副作用[5-7]。另外,表面活性剂在用完后若直接排放到环境中,会造成巨大的资源浪费,还可能引起严重的环境污染而破坏生态平衡[8]

    解决这类问题的一个比较理想的办法就是采用刺激响应型表面活性剂取代传统的表面活性剂。刺激响应型表面活性剂在受到外界刺激时,其聚集形态、表面活性、溶解性、黏度和乳液稳定性会发生变化。如果这种变化可逆,即存在“开”与“关”两种状态,则该表面活性剂被认为具有开关性能[9-12]。与小分子表面活性剂相比,高聚物表面活性剂具有很好的乳化稳定性、在各种表/界面上有很好的吸附能力、优良的分散性和凝聚力,并且许多高聚物表面活性剂还具有良好的保水性、增稠性、成膜性及粘附性,更重要的是,大多数高分子表面活性剂是低毒的。

    目前,开关型高聚物表面活性剂受到了普遍的关注[13-19]。研究结果表明,现有的表面活性剂还存在不少的问题,如pH开关型高分子表面活性剂在使用过程中需加入大量酸或碱,不仅会对环境造成污染,而且多次循环后也会因盐的累积而影响其性能;光开光型表面活性剂的应用受到了透明度的限制,因很多体系不透明,功能基团无法吸收特定波长的光做出响应或转变不彻底;热开光型表面活性剂需要较大的温度差,能耗大。因此,设计与开发成本低廉、工艺简单、性能优异的新型开关型高分子表面活性剂具有重大的意义。

    CO2开关型高分子表面活性剂因其环境友好、可循环利用的优势而备受青睐[20-27]。但是,目前的研究发现,CO2开关型高分子表面活性剂存在合成复杂、价格昂贵且响应速度慢等缺点。此外,研究大多集中于探讨表面活性剂水溶液聚集结构的变化,而开关型乳液的研究较少;且多数高分子表面活性剂均采用嵌段等复杂的方式合成。

    为了使操作简便,更适于实际应用,本实验采用廉价易得的单体甲基丙烯酸二乙氨基乙酯(DEAEMA)和乙烯基磺酸钠(SVS),通过简单的无规共聚的自由基聚合法制备出一种CO2开关型高分子表面活性剂,用于水/液体石蜡体系的乳化,研究了乳液的CO2开关性能和乳化机制,可为石油开采中利用开关型表面活性剂水溶液以乳液的形式提取石油并轻易破乳而分离得到石油提供借鉴。

    甲基丙烯酸二乙氨基乙酯(DEAEMA),AR,99%,阿拉丁试剂有限公司;乙烯基磺酸钠(SVS),25%水溶液,阿拉丁试剂有限公司;过硫酸铵(APS),AR,阿拉丁试剂有限公司;CO2,>99.999%,法国液化空气(中国)投资有限公司;N2,>99.999%,法国液化空气(中国)投资有限公司;液体石蜡,AR,国药集团试剂有限公司。

    称取 20 mmol DEAEMA和20 mmol SVS置于干燥的100 mL三颈烧瓶中,加入20 mL去离子水,搅拌并升温至80℃,加入2wt%的APS,反应6 h。所得的粗产物用透析袋(MW 3500 Da)透析24 h,每6 h换一次水。将所得的水溶液冷冻干燥,得到最终产物P(DEAEMA-SVS)。改变单体DEAEMA和单体SVS的物料比例进行同样的实验步骤,得到不同投料比(摩尔比为4∶1,3∶1,2∶1,1∶1,1∶2,1∶3和1∶4)的产物作对比研究。

    利用JNM-ECA600 核磁共振仪(日本电子株式会社)测定聚合物粒子1H-NMR谱(C3D6O);采用18角激光光散射仪(DAMN HELEOSⅡ,美国Wyatt公司)测定聚合物的凝胶渗透色谱;采用Zetasizer Nano S90高灵敏纳米粒度分析仪(英国马尔文公司)通过动态光散射(DLS)的方法测聚合物粒径;用吊环法在KRUSS K100表面张力仪上测P(DEAEMA-SVS)水溶液的表面张力;用拉环法在KRUSS K100表面张力仪(德国克吕士科学仪器有限公司)上测定P(DEAEMA-SVS)水溶液与液体石蜡之间的界面张力。采用XPV-990E透反射偏光显微镜(上海长方光学仪器有限公司)和LSM780激光共聚焦显微镜(德国Zeiss公司)观察乳液液滴形态。

    将聚合物P(DEAEMA-SVS)水溶液(1wt%)与液体石蜡按体积比1∶2两相混合,然后在超声细胞破碎仪(XC-CDS650,宁波市先倡电子科技有限公司)下超声乳化(450 W),其功率设置为60%,工作时间和间隔时间均设置为2 s,工作次数为8次。将制备好的乳液密封在室温下放置3周,通过直接观察法确定乳液的稳定性。通过液滴测试和电导率(DDSJ-308A电导率仪,上海精密科学仪器有限公司)测试确认乳液类型。

    向P(DEAEMA-SVS)乳液中通入CO2(100 mL/min)30 min后静置30 min,观察乳液外观。在60℃下再向该体系通入N2(100 mL/min)30 min,待溶液降温至室温后,再用超声细胞破碎仪超声乳化。重复上述步骤4次,探究乳液的开关性能。同时探究不同P(DEAEMA-SVS)浓度对乳液稳定性及失稳的影响。

    将P(DEAEMA-SVS)聚合物溶解在氘代丙酮中,利用核磁共振仪测得其1H-NMR谱如图1所示:δ=1.8~2.1 ×10−6(1、2、3)处的化学位移为高分子主链上的C—CH2—C和C—CH—C;δ=4.00×10−6(4)处的化学位移为—COOCH2CH2中的O原子所连的亚甲基H;δ=2.75×10−6(5)处的化学位移为—COOCH2CH2中远离氧原子的亚甲基H;δ=2.55×10−6(6)处的化学位移为—N(CH2CH3)2中的亚甲基H;δ=1.1×10−6(7)处的化学位移为—N(CH2CH3)2中的甲基H;δ=0.9×10−6(8)处的化学位移为高分子主链上的甲基H。

    图  1  聚(甲基丙烯酸二乙氨基乙酯-乙烯基磺酸钠) (P(DEAEMA-SVS))的核磁氢谱图
    Figure  1.  1H-NMR spectrum of poly(N, N-diethylaminoethyl methacrylate-sodium vinylsulfonate) (P(DEAEMA-SVS))

    P(DEAEMA-SVS)聚合物的凝胶渗透色谱(GPC)测试结果显示合成的该物质为高分子化合物,其数均分子量为5.262×104,均重分子量为3.857×103Z均分子量为9.466×104。其分子量分布为:40000~45000(29.22%)、45 000~50 000(24.36%)、50 000~60 000(25.70%)、60 000~80 000(12.11%)、100 000~200 000(3.62%)、200 000~400 000(1.62%),如图2所示。

    图  2  P(DEAEMA-SVS)的分子量分布
    Figure  2.  Molecular weight distribution of P(DEAEMA-SVS)

    单体投料比例不同时,所合成的聚合物粒子粒径会有差别,而粒径过大会使形成的乳液不稳定,粒径过小会使所形成的乳液不易破乳,因此选择合适尺寸的聚合物显得尤为重要。利用动态光散射原理,测定频率位移,由Stokes-Einstein方程计算得出颗粒粒径及分布。图3为不同投料比(DEAEMA和SVS单体摩尔比为4∶1,3∶1,2∶1,1∶1,1∶2,1∶3和1∶4)所得产物的尺寸及粒径分布。当单体DEAEMA和单体SVS的投料摩尔比为1∶1时,聚合物粒子的粒径约为113 nm。随着单体SVS投料比的增加(2∶1→1∶4),聚合物粒径在一定的范围内(60~115 nm)稳定且粒径分布(PDI)较窄。

    图  3  不同单体投料比对聚合物P(DEAEMA-SVS)粒径的影响
    Figure  3.  Influence of surfactants with different monomer ratios on particle-size of P(DEAEMA-SVS)

    将不同摩尔比单体投料所合成的聚合物分别配置成质量比为1%的水溶液,测得这些物质的表面张力如图4所示。用该仪器测得纯水的表面张力为74 mN/m。可以发现,不同单体配比投料所合成的聚合物均具有表面活性,都能降低水的表面张力。其中单体DEAEMA和单体SVS比例为1∶1和1∶2合成的聚合物活性更强,能够明显地降低水的表面张力至37.279 mN/m 和35.820 mN/m。

    图  4  不同单体投料比对聚合物P(DEAEMA-SVS)表面张力和界面张力的影响
    Figure  4.  Influence of surfactants with different monomer ratios on surface tension and interfacial tension of P(DEAEMA-SVS)

    除表面张力外,不同单体配比投料所合成的聚合物粒子对油水界面的吸附能力也是有很大的差别,而其在油水界面吸附的能力的大小会直接影响所形成乳液的稳定性。采用液体石蜡作为油相,研究不同单体配比投料所合成的聚合物水溶液与液体石蜡之间的界面张力(图4)。用该仪器测得纯水与液体石蜡直接的界面张力为66.231 mN/m。相对于其他单体配比,单体配比为1∶1和1∶2时,所得聚合物在油水界面上的吸附能力更强,能将界面张力降至5.492 mN/m和4.994 mN/m。这两种单体配比投料所得聚合物的界面张力值大幅下降,说明这两种聚合物具有很强的表面活性和界面活性,为形成稳定的乳液提供了可能,P(DEAEMA-SVS)聚合物能作为唯一乳化剂稳定乳液。

    根据以上数据的分析,不同单体比例投料所合成的聚合物无论是粒径大小还是表面/界面活性都有着很大的差异。聚合物表面活性剂中所含亲/疏水单体基团比例的不同会导致HLB值存在差异,进而引起乳化性能的改变。当DEAEMA∶ SVS为2∶1时,所合成的聚合物粒子的表面张力和界面张力均略低于DEAEMA和SVS的投料摩尔比为1∶1时所合成的聚合物粒子,但作为唯一乳化剂制备的乳液在静置3周后会分出水层,而当DEAEMA∶ SVS=1∶1所合成聚合物粒子的乳液却更稳定。因此接下来选择DEAEMA∶ SVS=1∶1时所合成聚合物粒子形成的乳液进行乳化性能和开关性能的研究。

    用P(DEAEMA-SVS)聚合物作为唯一乳化剂制备了水/液体石蜡的乳液,所制备的初始乳液的外观均一,没任何分层或分水分油现象。将得到的乳液取一滴滴入清水中,发现乳液滴能在水中迅速分散;并用电导率仪测得该乳液的电导率为120 μS/cm,其值远大于10 μS/cm,证明用P(DEAEMA-SVS)聚合物制备的水/液体石蜡乳液是水包油(O/W)型。将制备好的P(DEAEMA-SVS)乳液在室温下密封静置3周,发现乳液未出现分层现象,如图5所示。图6为乳液的显微镜照片。可以发现放置三周的乳液与原始乳液的乳液液滴大小并没有明显差别。由此说明P(DEAEMA-SVS) 是一种非常有效的高分子表面活性剂。

    图  5  原始P(DEAEMA-SVS)乳液 (a) 和静置3周后 (b)的外观照片
    Figure  5.  Photographs of P(DEAEMA-SVS) emulsions followed by a period of 0 min (a) and 3 weeks (b) on standing
    图  6  静置30 min (a) 和静置3周后 (b) P(DEAEMA-SVS)乳液的显微镜图像
    Figure  6.  Optical microscopy images of P(DEAEMA-SVS) emulsions followed by a period of 30 min (a) and 3 weeks (b) on standing

    将不同浓度的P(DEAEMA-SVS)水溶液与液体石蜡混合形成乳液,将乳液静置一段时间后观察乳液的外观变化,如图7所示。当表面活性剂P(DEAEMA-SVS)浓度低于0.2wt%时,虽然也能形成乳液,但其乳液有明显的分层,这是由于浓度较低时形成的乳液液滴粒径较大,而液体石蜡的密度较小,引出液滴在浮力的作用下集中在上层,其水相也不是澄清的,说明仍有P(DEAEMA-SVS)颗粒存在于水相中;而当其浓度大于0.2wt%时,均能形成稳定均一的乳液。

    图  7  不同浓度 (0.02wt%~1wt%)的P(DEAEMA-SVS)对乳液稳定性的影响
    Figure  7.  Stability of emulsions formed by different concentrations of P(DEAEMA-SVS) from 0.02wt% to 1wt%

    不同的油水比例对乳液稳定性也存在影响。当液体石蜡与水的比例小于1∶1时,均能形成稳定的乳液。但当液体石蜡与水的比例超过1∶1时,虽然也能形成乳液,如图8(b)所示,但该乳液无法一直稳定为均一相,放置一段时间后液滴将上浮分层,下层水相不澄清(图8(a)),说明当液体石蜡的量大于50%时形成的乳液不稳定。

    图  8  不同油水比对P(DEAEMA-SVS) 乳液稳定性的影响
    Figure  8.  Stability of P(DEAEMA-SVS) emulsions formed by different ratios of liquid paraffin to water ((a) For 3 min; (b) For 3 weeks)

    在室温下,向聚合物P(DEAEMA-SVS) 水/液体石蜡的乳液体系中通入CO2 10 min后,发现有明显的油层析出,继续通CO2至30 min后乳液完全破乳,溶液回到初始的两相状态,且油水界线清晰。CO2的加入使聚合物侧链上的叔胺基团质子化从而增加了聚合物的水溶性,使聚集缠绕的聚合物链快速分散并向水相中迅速迁移,因而无法吸附在油水界面上。由于P(DEAEMA-SVS)在发生质子化作用后,其水溶性增大使其在破乳后完全存在于水相中,因此不仅不会对油相造成污染而且更有利于回收和再次利用。

    破乳后的体系在60℃温度下,通入N2 30 min后,发现油水两层的界面开始模糊,油相变浑浊。待体系降温至室温后,将该体系经细胞粉碎机乳化后又可再次获得稳定的乳液。N2的加入排出了CO2,使叔胺基团发生去质子化反应,分散的聚合物链再次形成聚集缠绕的结构并从水中析出,吸附在油水界面上。由此看出P(DEAEMA-SVS)粒子(1wt%)制备的水/液体石蜡乳液具有非常好的CO2开关性能,并且上述通CO2破乳/通N2再乳化的过程可重复多次,多次循环过程中制备的乳液完全相同,图9为P(DEAEMA-SVS)聚合物粒子(1wt%)制备的水/液体石蜡乳液对CO2/N2的刺激响应及3次破乳/再乳化过程。

    图  9  用P(DEAEMA-SVS)制备的水/液体石蜡乳液CO2循环过程
    Figure  9.  CO2 switchable demulsification and re-emulsification of P(DEAEMA-SVS) emulsion

    图10为液体石蜡与水的比例对聚合物P(DEAEMA-SVS) 水/液体石蜡乳液失稳破乳的影响。由图10(a)可以看出,当油水比小于1∶1时乳液均具有良好的稳定性。向乳液中通入CO2 30 min后,乳液能快速破乳实现油水分离,表明乳液的破乳与液体石蜡与水的比例无关。

    图  10  液体石蜡的量对P(DEAEMA-SVS)乳液失稳的影响
    Figure  10.  Effect of liquid paraffin amounts on instability of P(DEAEMA-SVS) emulsion ((a) For 3 min; (b) For 3 weeks)

    图11为在同一油水比例下不同浓度的P(DEAEMA-SVS)水溶液与液体石蜡形成的乳液破乳10 min时的情况。随着P(DEAEMA-SVS) 水溶液浓度的升高,其所含的聚合粒子增多,使乳液对CO2的响应速率及响应能力不同。可知,由不同浓度的P(DEAEMA-SVS)水溶液制备的乳液均能破乳实现油水分离(图11(b)),但破乳的速率不同。当向体系内通入CO2 10 min后,可以看到低浓度(0.025wt%)的乳液已经完全破乳,油水几乎完全分离。而高浓度的乳液需要更长的破乳时间。P(DEAEMA-SVS)浓度大于0.8wt%所形成的乳液需要通CO2 30 min才能完全破乳,并且破乳后水溶液的乳白色也比低浓度的深。实验结果表明,聚合物的浓度一定程度上会减慢乳液的破乳速率,但均可以实现完全破乳。由此说明,该聚合物P(DEAEMA-SVS) 表面活性剂能与水/液体石蜡形成CO2开关型乳液。

    图  11  P(DEAEMA-SVS)的浓度对乳液失稳的影响
    Figure  11.  Effect of P(DEAEMA-SVS) concentration on emulsion instability((a) For 3 min; (b) For 3 weeks)

    图12为P(DEAEMA-SVS)水/液体石蜡乳液的乳化和破乳机制。聚合物P(DEAEMA-SVS)因其高分子侧链上的叔胺基团的疏水性,聚集缠绕成小球并能吸附在油水界面上,使液体石蜡以液滴的形式均匀地分散在水相中,形成稳定的水包油型(O/W型)乳液。

    图  12  P(DEAEMA-SVS)乳液的乳化和破乳机制
    Figure  12.  Proposed emulsifacation and demulsification mechanism of P(DEAEMA-SVS) emulsions

    当向溶液中通入CO2,使水中产生大量的H+与叔胺基团发生质子化反应形成亲水的季铵盐,增大了聚合物的亲水性,改变了物质本身的水油平衡,降低了物质的表面活性,从而使高分子链在静电斥力的作用下分散并将高分子链迁移至水中,油水界面遭到破坏,乳液的液滴相互兼并,最终引起油水两相分离,使乳液破乳。在60℃温度下,通入N2可将CO2去除,这使聚合物侧链上的叔胺基团发生去质子化作用,重新回到原来疏水的状态,并聚集缠绕成球状再次吸附在油水界面上,再次形成稳定的乳液。

    (1) 制备了CO2开关型聚合物P(DEAEMA-SVS)表面活性剂,能有效降低水的表面张力和水/液体石蜡的界面张力。DEAEMA/SVS单体投料比为1∶1 (摩尔比)时,形成的聚合物粒子粒径分布窄,可将水的表面张力降低至37.279 mN/m,将水/液体石蜡的界面张力降低至5.492 mN/m,其表面活性和界面活性均很强,可作为唯一乳化剂稳定乳液。

    (2) 聚合物P(DEAEMA-SVS)表面活性剂水溶液可与液体石蜡形成稳定且灵敏的CO2开关型乳液。通入CO2 30 min可使乳白色的P(DEAEMA-SVS) 乳液破乳变为澄清态;在60℃下通入N2能快速地去除CO2,使溶液变回原始状态再乳化。通CO2破乳/通N2再乳化的过程可重复进行。由P(DEAEMA-SVS)粒子(1wt%)制备的水/液体石蜡乳液具有非常好的CO2开关响应性能,且该开关性能是可循环的。

    (3) P(DEAEMA-SVS)表面活性剂因其侧链上的叔胺基团的疏水性,可与水/液体石蜡形成水包油型乳液。在CO2的作用下,叔胺基团发生质子化作用形成亲水的季铵盐,乳液的油水界面遭破坏且两相分离而破乳。60℃温度下通入N2可去除CO2,使聚合物侧链上的叔胺基团去质子化重新形成疏水性聚集球体吸附在油水界面上,再次稳定乳液。

  • 图  1   MMO的结构记忆效应

    Figure  1.   Structure memory effect of MMO

    图  2   MMO去除的重金属主要机制

    Figure  2.   Removal mechanism of heavy metal by MMO

    图  3   FeCu-MMO对As的光催化氧化及吸附机制

    Figure  3.   Photocatalytic oxidation and adsorption mechanism of As removal by FeCu-MMO

    图  4   FeMn-MMO催化降解水中三氯乙烯的反应机制

    Figure  4.   Reaction mechanism of catalytic degradation of trichloroethylene in water by FeMn-MMO

    图  5   钙铝石对水中阴离子的去除机制

    Figure  5.   Removal mechanism of anions in water by mayenite

    表  1   混合金属氧化物(MMO)的不同制备方法及条件

    Table  1   Different preparation methods and conditions of mixed metal oxide (MMO)

    Synthetic methodMMORaw materialpHOther conditionsCalcination temperature/℃Preparation time/hRef.
    Solid-phase sintering CaAl-MMO CaO, Al2O3 1200 4-5 [15]
    Polymer precursor calcination method ZnAlNiZr-MMO Zn(NO3)2·6H2O, Al(NO3)3·9H2O, Ni(NO3)2·6H2O, Zr(NO3)4·5H2O, C6H8O7·H2O, HOCH2CH2OH Stir at 60-70℃, stir at 80-
    90℃ and heat treat at 300℃
    550 18-24 [16]
    CoCu-MMO Co(NO3)2·6H2O, Cu(NO3)2·3H2O, C6H8O7·H2O, CH3CH2OH Stir at normal atmospheric temperature and heat to 80℃ 500 53-55 [17]
    LDHs precursor calcination method MgAl-MMO Mg(NO3)2·6H2O, Al(NO3)3·9H2O, NaOH, Na2CO3 9.0 Refluxing crystallization 500 13-15 [18]
    CoCr-MMO Co(NO3)2·6H2O, Cr(NO3)3·9H2O, NaOH, Na2CO3 9.0 Age at 80℃ for 24 h, stir,
    60℃ drying
    400 40-42 [19]
    Chemical coprecipitation FeSn-MMO Na2SnO3, FeCl3, NaOH 5.3 Stir, precipitate, 70℃ drying 250 11-13 [20]
    FeZr-MMO Zr(SO4)2·4H2O, FeSO4·7H2O, NaOH 7.5 Stir, precipitate, aging,
    65℃ drying
    [21]
    Hydrothermal method SbMo-MMO SbCl3, NaMoO6·2H2O, CH3CH2OH Magnetic stir, pressure cooker 180℃ for 24 h >24 [22]
    Note: LDHs—Layered double hydroxides.
    下载: 导出CSV

    表  2   MMO处理水中污染物的应用

    Table  2   Application of MMO in the wastewater treatment

    ContaminantMMOApplicationAdsorption
    capacity/(mg·g−1)
    Removal
    efficiency/%
    MechanismRef.
    Heavy metal ZnSn-MMO Cu2+, Pb2+, Zn2+ 38.9, 117.2, 29.1 Surface complexation and adsorption [50]
    FeMn-MMO Pb2+ 108.1 Surface complexation and adsorption [51]
    MgAl-MMO Cd2+, Pb2+ 386.1, 359.7 Surface complexation and adsorption [52]
    FeZr-MMO Cr(Ⅵ) 59.9 Reorganization and surface adsorption [53]
    MgAl-MMO Cr(Ⅵ) 94.6 Reorganization and surface adsorption [54]
    Metalloid FeZr-MMO Se(IV) 277.0 Reorganization and surface adsorption [55]
    MgAl2O4 Se(IV) 179.6 Reorganization and surface adsorption [49]
    FeZr-MMO Sb(V) 51.0 Reorganization and surface adsorption [21]
    FeMn-MMO Sb(V) 95.0 Reorganization and surface adsorption [37]
    FeMn-MMO As(V) 132.8 Reorganization and surface adsorption [56]
    FeAl-MMO As(III) 314.9 >99.0 Catalysis and adsorption [57]
    CuFe-MMO As(III) 118.1 Catalysis and adsorption [58]
    Organic pollutants FeMn-MMO TCE 100 Catalysis [59]
    NiCo2O4 AP 99.5 Catalysis [60]
    CoNi-MMO PR 70.0 Adsorption [61]
    FeMn-MMO RBK5 88.0 Catalysis [62]
    1D ZnO-ZnFe2O4 CR 263.0 Adsorption [13]
    Nd-CoAl-MMO AR 100 Catalysis [63]

    Halogen ion
    MgAl-MMO Br, I 362.3 Reorganization and surface adsorption [47]
    MgZr-MMO F 144.1 Reorganization and surface adsorption [64]
    LaZr-MMO F 97.0 Reorganization and surface adsorption [65]
    CaAl-MMO Cl 105.9, 96.0 Reorganization and surface adsorption [15]
    Oxyanion ZnAl−MMO SO42– 62.5 Reorganization and surface adsorption [66]
    CeAl-MMO PO43– 70.4 Reorganization and surface adsorption [67]
    CeAl-MMO PO43– 249.3 Reorganization and surface adsorption [68]
    Other anions MgAl-MMO S2– 82.0 Reorganization and surface adsorption [69]
    Notes: TCE—Trichloroethylene; AP—4−acetaminophenol; PR—Procion red; RBK5—Reactive black 5; CR—Congo red; AR14—Acid red 14.
    下载: 导出CSV
  • [1]

    BALDASSARRE G D, WANDERS N, AGHAKOUCHAK A, et al. Water shortages worsened by reservoir effects[J]. Nature,2018,1(11):617-622.

    [2]

    MENATALLA A, MUSTHAFA O M, ADEWALE G, et al. Recent developments in hazardous pollutants removal from wastewater and water reuse within a circular economy[J]. Nature,2022,12(5):1-25.

    [3]

    SERMON P A, WALTON T J, LUENGO M A M, et al. Characterization of porous silica-alumina sol-gels: Model heterogeneous catalysts[J]. Studies in Surface Science and Catalysis,1991,62:599-606.

    [4]

    AVNISH A, VIVEK J, KULDEEP S, et al. Applications of metal/mixed metal oxides as photocatalyst: A review[J]. Oriental Journal of Chemistry,2016,32(4):20838.

    [5] 武利园, 王鑫, 郭朋朋, 等. 层状双金属氢氧化物活化过硫酸盐降解有机污染物研究进展[J]. 复合材料学报, 2022, 39(5):2034-2048.

    WU Liyuan, WANG Xin, GUO Pengpeng, et al. Layered double hydroxides mediated persulfate activation for organic pollutants degradation: A review[J]. Acta Materiae Compositae Sinica,2022,39(5):2034-2048(in Chinese).

    [6]

    TAO Y, WU L, ZHAO X, et al. Strong hollow spherical La2NiO4 photocatalytic microreactor for round-the-clock environmental remediation[J]. ACS Applied Materials & Interfaces,2019,11(29):25967-25975. DOI: 10.1021/acsami.9b07216

    [7]

    EFAZ A, AMNB C, MAHD E, et al. Mixed oxides CuO-NiO fabricated for selective detection of 2-aminophenol by electrochemical approach[J]. Journal of Materials Research and Technology,2020,9(2):1457-1467. DOI: 10.1016/j.jmrt.2019.11.071

    [8] 刘媛. Cu掺杂的Mg-Al类水滑石的制备、表征及其催化性能[J]. 化工进展, 2011, 30(11):2438-2442.

    LIU Yuan. Preparation and characterization of Cu-doped Mg-Al hydrotalcites and their catalytic performances[J]. Chemical Industry and Engineering Progress,2011,30(11):2438-2442(in Chinese).

    [9]

    TAKEHIRA K. Recent development of layered double hydroxide-derived catalysts−Rehydration, reconstitution, and supporting, aiming at commercial application[J]. Applied Clay Science,2017,136:112-141. DOI: 10.1016/j.clay.2016.11.012

    [10] 李丽. 双金属氧化物微纳结构材料的制备及其电催化性能研究[D]. 淮北: 淮北师范大学, 2020.

    LI Li. Preparetion of micro/nanostructured bimetallic oxides and enhanced electrocatalytic performance[D]. Huaibei: Huaibei Normal University, 2020(in Chinese).

    [11]

    YAN L G, YANG K, YU S J, et al. Magnetic Fe3O4/MgAl-LDH composite for effective removal of three red dyes from aqueous solution[J]. Chemical Engineering Journal,2014,252(15):38-46.

    [12]

    ZHANG H, LAI L, FANG Q, et al. Cation-π structure inducing efficient peroxymonosulfate activation for pollutant degradation over atomically dispersed cobalt bonding graphene-like nanospheres[J]. Applied Catalysis B: Environmental,2021,286(5):119912.

    [13]

    APPIAH N R, BAYE A F, GADISA B T, et al. In-situ prepared ZnO-ZnFe2O4 with 1D nanofiber network structure: An effective adsorbent for toxic dye effluent treatment[J]. Journal of Hazardous Materials, 2019, 373: 459-467.

    [14]

    RAMU A G, KUMARI M, ELSHIKH M S, et al. A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in aqueous medium[J]. Chemosphere,2021,271:129475. DOI: 10.1016/j.chemosphere.2020.129475

    [15]

    PAUL B, CHANG W. Mayenite-to-hydrocalumite transformation for the removal of chloride from salinized groundwater and the recycling potential of spent hydrocalumite for chromate removal[J]. Desalination,2020,474:114186. DOI: 10.1016/j.desal.2019.114186

    [16]

    BEZERRA D M, ASSAF E M. Influence of the preparation method on the structural properties of mixed metal oxides[J]. Science and Technology of Materials,2018,30(3):166-173. DOI: 10.1016/j.stmat.2018.07.001

    [17]

    LUO J, XUAN K, WANG Y, et al. Aerobic oxidation of fluorene to fluorenone over Co–Cu bimetal oxides[J]. New Journal of Chemistry,2019,43(22):8428-8438. DOI: 10.1039/C9NJ00499H

    [18] 赵芸. 层状双金属氢氧化物及氧化物的可控制备和应用研究[D]. 北京: 北京化工大学, 2002.

    ZHAO Yun. Preparation of LDH and LDO in a controllable fashion for specific applications[D]. Beijing: Beijing University of Chemical Technology, 2002(in Chinese).

    [19]

    DENG W, GAO B, JIA Z, et al. Co–Cr bimetallic oxides derived from layered double hydroxides with high catalytic performance for chlorinated aromatics oxidation[J]. Catalysis Science& Technology,2021,11(15):5094-5108.

    [20]

    BISWAS K, GUPTA K, GHOSH U C. Adsorption of fluoride by hydrous iron(III)-tin(IV) bimetal mixed oxide from the aqueous solutions[J]. Chemical Engineering Journal, 2009, 149(1-3): 196-206.

    [21]

    LI X, DOU X, LI J. Antimony(V) removal from water by iron-zirconium bimetal oxide: Performance and mecha-nism[J]. Journal of Environmental Sciences,2012,24(7):1197-1203. DOI: 10.1016/S1001-0742(11)60932-7

    [22]

    WANG J, WANG B, LIU Z, et al. Nature of bimetallic oxide Sb2MoO6/rGO anode for high-performance potassium-ion batteries[J]. Advanced Science,2019,6(17):1900904. DOI: 10.1002/advs.201900904

    [23]

    RAO C, BISWAS K. Essentials of inorganic materials synthesis[M]. American: John Wiley & Sons, 2015.

    [24] 顾智军. 复合金属氧化物的可控制备、结构及其性能研究[D]. 北京: 北京化工大学, 2008.

    GU Zhijun. Controllable preparation, structure and properties of complex metal oxides[D]. Beijing: Beijing University of Chemical Technology, 2008(in Chinese).

    [25]

    CAVANI F, TRIFIRO F, BARTOLINI A, et al. SnO2-V2O5-based catalysts: Nature of surface species and their acti-vity in o-xylene oxidation[J]. Journal of the Chemical Society,1996,92(21):4321-4330.

    [26]

    GUANG Q L, INGO L, GERHARD W. A general polymer-based process to prepare mixed metal oxides: The case of Zn1-xMgxO nanoparticles[J]. Journal of the American Chemical Society,2006,128(48):15445. DOI: 10.1021/ja0638096

    [27] 刘星群, 谢水波, 曾凡勇, 等. 亚铁铝类水滑石吸附铀的性能与吸附机制[J]. 复合材料学报, 2017, 34(1):183-190. DOI: 10.13801/j.cnki.fhclxb.20160308.001

    LIU Xingqun, XIE Shuibo, ZENG Fanyong, et al. Characteristics and mechanism of uranium(Ⅵ) adsorption by Fe(Ⅱ)-Al LDH[J]. Acta Materiae Compositae Sinica,2017,34(1):183-190(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20160308.001

    [28] 胡静. 焙烧镁铝碳酸根水滑石在含氯废水处理中的应用基础研究[D]. 杭州: 浙江大学, 2005.

    HU Jing. Adsorption behaviors of calcined Mg-Al-CO3-LDH towards removal of chloride from aqueous solution[D]. Hangzhou: Zhejiang Unversity, 2005(in Chinese).

    [29]

    FENG X, LONG R, WANG L, et al. A review on heavy metal ions adsorption from water by layered double hydroxide and its composites[J]. Separation and Purification Technology,2022,284:120099. DOI: 10.1016/j.seppur.2021.120099

    [30]

    LEE S B, KO E H, PARK J Y, et al. Mixed metal oxide by calcination of layered double hydroxide: Parameters affecting specific surface area[J]. Nanomaterials,2021,11(5):1153. DOI: 10.3390/nano11051153

    [31]

    OCSOY I, DEMIRBAS A, MCLAMORE E S, et al. Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens[J]. Jour-nal of Molecular Liquids,2017,238:263-269. DOI: 10.1016/j.molliq.2017.05.012

    [32]

    HAN L, DONG S, WANG E. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Advanced Materials,2016,28(42):9266-9291. DOI: 10.1002/adma.201602270

    [33]

    TROTOCHAUD L, RANNEY J K, WILLIAMS K N, et al. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution[J]. Journal of the American Chemical Society,2012,134(41):17253-17261. DOI: 10.1021/ja307507a

    [34]

    MANVIRI R, UMA S. Photocatalytic degradation of toxic phenols from water using bimetallic metal oxide nanostructures[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2018,553:546-561. DOI: 10.1016/j.colsurfa.2018.05.071

    [35] 向超. 基于p-d轨道杂化的过渡金属氧化物制备及吸附除磷机制研究[D]. 北京: 北京林业大学, 2020.

    XIANG Chao. Preparation of transition metal oxides based on p-d orbital hybridization and adsoption mechanism for aqueous PO43–[D]. Beijing: Beijing Forestry University, 2020(in Chinese).

    [36]

    LIU R, XU W, HE Z, et al. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide[J]. Chemosphere,2015,138:616-624. DOI: 10.1016/j.chemosphere.2015.07.039

    [37]

    YANG K, LI C, WANG X, et al. Functional adjustment and cyclic application of Fe-Mn bimetal composite for Sb(V) removal: Transformation of iron oxides forms and a stable regeneration method[J]. Journal of Cleaner Production,2020,266:122007. DOI: 10.1016/j.jclepro.2020.122007

    [38]

    WANG P, WANG J, AN X, et al. Generation of abundant defects in Mn-Co mixed oxides by a facile agargel method for highly efficient catalysis of total toluene oxidation[J]. Applied Catalysis B:Environmental,2021,282:119560. DOI: 10.1016/j.apcatb.2020.119560

    [39]

    YAMAGUCHI K, MORI K, MIZUGAKI T, et al. Epoxidation of α, β-unsaturated ketones using hydrogen peroxide in the presence of basic hydrotalcite catalysts[J]. The Jour-nal of Organic Chemistry,2000,65(21):6897-6903.

    [40]

    PALMER H M, SNEDDEN A, WRIGHT A J, et al. Crystal structure and magnetic properties of Ca2MnAlO5.5, an n=3 brownmillerite phase[J]. Chemistry of Materials,2006,18(5):1130-1133. DOI: 10.1021/cm052134n

    [41]

    JUNG S Y, KIM B K, HIRATA S, et al. Particle size effect of layered double hydroxide on the porosity of calcined metal oxide[J]. Applied Clay Science,2020,195:188-193.

    [42]

    MORIYAMA S, SASAKI K, HIRAJIMA T. Effect of freeze drying on characteristics of Mg-Al layered double hydroxides and bimetallic oxide synthesis and implications for fluoride sorption[J]. Applied Clay Science, 2016, 132-133: 460-467.

    [43]

    JIANG J, ZHANG Y, ZHENG Y, et al. Transesterification of soybean oil with ethylene glycol catalyzed by modified Li-Al layered double hydroxides[J]. Chemical Engineering & Technology,2013,36(8):1371-1377.

    [44]

    TAKEMOTO M, TOKUDOME Y, MURATA H, et al. Synthesis of high-specific-surface-area Li-Al mixed metal oxide: Through nanoseed-assisted growth of layered double hydroxide[J]. Applied Clay Science,2021,203:106006. DOI: 10.1016/j.clay.2021.106006

    [45] 唐朝春, 陈惠民, 刘名, 等. ZnAl和MgAl水滑石吸附废水中磷的研究进展[J]. 化工进展, 2015, 34(1):245-251. DOI: 10.16085/j.issn.1000-6613.2015.01.044

    TANG Chaochun, CHEN Huimin, LIU Ming, et al. Advances in adsorption of phosphate in wastewater by ZnAl and MgAl hydrotalcite[J]. Chemical Industry and Engi-neering Progress,2015,34(1):245-251(in Chinese). DOI: 10.16085/j.issn.1000-6613.2015.01.044

    [46] 崔婉莹, 艾恒雨, 张世豪, 等. 改性吸附剂去除废水中磷的应用研究进展[J]. 化工进展, 2020, 39(10):4210-4226. DOI: 10.16085/j.issn.1000-6613.2019-2085

    CUI Wanying, AI Hengyu, ZHANG Shihao, et al. Research status on application of modified adsorbents in phosphorus removal from wastewater[J]. Chemical Industry and Engineering Progress,2020,39(10):4210-4226(in Chinese). DOI: 10.16085/j.issn.1000-6613.2019-2085

    [47] 吕亮. 层状双金属(氢)氧化物对卤离子的吸附和离子交换性能研究[D]. 北京: 北京化工大学, 2005.

    LYU Liang. Adsoption an ion-exchange behavior of LDH in uptake of halide anions from aqueous solution[D]. Beijing: Beijing University of Chemical Technology, 2005(in Chinese).

    [48]

    ULIBARRI M A, PAVLOVIC I, BARRIGA C, et al. Adsorption of anionic species on hydrotalcite-like compounds: Effect of interlayer anion and crystallinity[J]. Applied Clay Science, 2001, 18(1-2): 17-27.

    [49]

    TIAN N, ZHOU Z, TIAN X, et al. Superior capability of MgAl2O4 for selenite removal from contaminated groundwater during its reconstruction of layered double hydroxides[J]. Separation and Purification Technology,2017,176:66-72. DOI: 10.1016/j.seppur.2016.11.062

    [50]

    HONARMAND M, AMINI M, IRANFAR A, et al. Green synthesis of ZnO/SnO2 nanocomposites using pine leaves and their application for the removal of heavy metals from aqueous media[J]. Journal of Cluster Science,2021,33:301-310.

    [51]

    NAGA J M S V, HARAFAN A, SEN G S, et al. Chitosan immobilised granular FeOOH-MnxOy bimetal-oxides nanocomposite for the adsorptive removal of lead from water[J]. Journal of Environmental Chemical Engineering,2022,10(2):107353. DOI: 10.1016/j.jece.2022.107353

    [52]

    HOU T, YAN L, LI J, et al. Adsorption performance and mechanistic study of heavy metals by facile synthesized magnetic layered double oxide/carbon composite from spent adsorbent[J]. Chemical Engineering Journal,2020,384(15):123331.

    [53]

    WANG Y, LIU D F, LU J B, et al. Enhanced adsorption of hexavalent chromium from aqueous solutions on facilely synthesized mesoporous iron-zirconium bimetal oxide[J]. Colloids & Surfaces A: Physicochemical & Engi-neering Aspects,2015,481:133-142.

    [54]

    ZHANG Z Q, LIAO M C, ZENG H Y, et al. Temperature effect on chromium(VI) removal by Mg/Al mixed metal oxides as adsorbents[J]. Applied Clay Science,2014,102:246-253. DOI: 10.1016/j.clay.2014.10.005

    [55]

    MEGHA T, SOMENATH M. Bimetallic oxide nanohybrid synthesized from diatom frustules for the removal of selenium from water[J]. Journal of Nanomaterials, 2017, 2017: 1734643.

    [56]

    WEN Z P, ZHANG Y L, GUO S, et al. Facile template-free fabrication of iron manganese bimetal oxides nanospheres with excellent capability for heavy metals removal[J]. Journal of Colloid & Interface Science,2017,486:211-218.

    [57]

    DING Z, FU F, CHENG Z, et al. Novel mesoporous FeAl bimetal oxides for As(III) removal: Performance and mechanism[J]. Chemosphere,2017,169:297-307. DOI: 10.1016/j.chemosphere.2016.11.057

    [58]

    SUN T, ZHAO Z, LIANG Z, et al. -Efficient As(III) removal by magnetic CuO-Fe3O4 nanoparticles through photo-oxidation and adsorption under light irradiation[J]. Jour-nal of Colloid and Interface Science,2017,495:168-177. DOI: 10.1016/j.jcis.2017.01.104

    [59]

    YANG X, CAI J, WANG X, et al. A bimetallic Fe-Mn oxide-activated oxone for in situ chemical oxidation (ISCO) of trichloroethylene in groundwater: Efficiency, sustained activity, and mechanism investigation[J]. Environmental Science and Technology,2020,54(6):3714-3724. DOI: 10.1021/acs.est.0c00151

    [60]

    LI X, YANG Z, WU G, et al. Fabrication of ultrathin lily-like NiCo2O4 nanosheets via mooring NiCo bimetallic oxide on waste biomass-derived carbon for highly efficient removal of phenolic pollutants[J]. Chemical Engineering Journal,2022,441(1):136066.

    [61]

    CHOWDHURY A N, RAHIM A, FERDOSI Y J, et al. Cobalt-nickel mixed oxide surface: A promising adsorbent for the removal of PR dye from water[J]. Applied Surface Science,2010,256(12):3718-3724. DOI: 10.1016/j.apsusc.2010.01.013

    [62] 徐铭骏, 郭兆春, 李立, 等. 纳米片状Mn2O3@α-Fe3O4活化过碳酸盐降解偶氮染料[J]. 化工进展, 2022, 41(2):1043-1053.

    XU Mingjun, GUO Zhaochun, LI Li, et al. Degradation of azo dyes by sodium percarbonate activated with nanosheet Mn2O3@α-Fe3O4[J]. Chemical Industry and Engineering Progress,2022,41(2):1043-1053(in Chinese).

    [63]

    KHODAM F, AMANI G H R, ABER S, et al. Neodymium doped mixed metal oxide derived from CoAl-layered double hydroxide: Considerable enhancement in visible light photocatalytic activity[J]. Journal of Industrial and Engineering Chemistry,2018,68:311-324. DOI: 10.1016/j.jiec.2018.08.002

    [64]

    WANG X, PFEIFFER H, WEI J, et al. 3D porous Ca-modified Mg-Zr mixed metal oxide for fluoride adsorption[J]. Chemical Engineering Journal,2022,428(15):131371.

    [65]

    MUTHU PRABHU S, MEENAKSHI S. Enriched fluoride sorption using chitosan supported mixed metal oxides beads: Synthesis, characterization and mechanism[J]. Journal of Water Process Engineering,2014,2:96-104. DOI: 10.1016/j.jwpe.2014.05.011

    [66] 程珺煜, 岳秀萍, 曹岳, 等. Zn/Al双金属氧化物对水中硫酸根离子的吸附性能[J]. 环境工程学报, 2014, 8(1):131-137.

    CHENG Junyu, YUE Xiuping, CAO Yue, et al. Adsorptive removal of sulfate from water by Zn/Al layered double oxide[J]. Chinese Journal of Environmental Engineering,2014,8(1):131-137(in Chinese).

    [67]

    NAKARMI A, MOREIRA R, BOURDO S E, et al. Removal and recovery of phosphorus from contaminated water using novel, reusable, renewable resource−based aluminum/cerium oxide nanocomposite[J]. Water, Air, & Soil Pollution,2020,231(12):559-568.

    [68]

    NAKARMI A, CHANDRASEKHAR K, BOURDO S E, et al. Phosphate removal from wastewater using novel renewable resource-based, cerium/manganese oxide-based nanocomposites[J]. Environmental Science and Pollution Research International,2020,27(29):36688-36703. DOI: 10.1007/s11356-020-09400-0

    [69] 王孝华, 李传强, 汤琪, 等. 利用镁铝双金属氧化物去除S2−的研究[J]. 应用化工, 2015, 44(3):401-404.

    WANG Xiaohua, LI Chuanqiang, TANG Qi, et al. Study on Mg-Al layered double oxides for sulfide anion (S2–) removal[J]. Applied Chemical Industry,2015,44(3):401-404(in Chinese).

    [70]

    SIDDIQUI S I, NAUSHAD M, CHAUDHRY S A. Promising prospects of nanomaterials for arsenic water remediation: A comprehensive review[J]. Process Safety and Environmental Protection,2019,126:60-97. DOI: 10.1016/j.psep.2019.03.037

    [71]

    ALLAM B K, MUSA N, DEBNATH A, et al. Recent developments and application of bimetallic based materials in water purification[J]. Environmental Challenges,2021,5:352-366.

    [72] 中国国家标准化管理委员会. 地表水环境质量标准: GB/T 3838—2002[S]. 北京: 中国环境科学出版社, 2002.

    Standardization Administration of the People’s Republic of China. Environmental quality standards for surface water: GB/T 3838—2002[S]. Beijing: China Standards Press, 2005(in Chinese).

    [73] 中国国家标准化管理委员会. 海水水质标准: GB/T 3097—1997[S]. 北京: 中国标准出版社, 1997.

    Standardization Administration of the People’s Republic of China. Sea water quality standard: GB/T 3097—1997[S]. Beijing: China Environmental Press, 1997(in Chinese).

    [74] 中国国家标准化管理委员会. 污水综合排放标准: GB/T 8978—1996[S]. 北京: 中国标准出版社, 1997.

    Standardization Administration of the People’s Republic of China. Integrated wastewater discharge standard: GB/T 8978—1996[S]. Beijing: China Standards Press, 1997(in Chinese).

    [75]

    ELSAYED M, ESHAQ G, ELMETWALLY A E. Adsorption of heavy metals from aqueous solutions by Mg-Al-Zn mingled oxides adsorbent[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research,2016,74(7):1644-1657.

    [76]

    FERNANDEZ M G C, PALACIOS M A, CAMARA C. Flow-injection and continuous-flow systems for the determination of Se(IV) and Se(VI) by hydride generation atomic absorption spectrometry with on-line prereduction of Se(VI) to Se(IV)[J]. Analytica Chimica Acta,1993,283(1):386-392. DOI: 10.1016/0003-2670(93)85248-I

    [77]

    QI P, WANG Y, ZENG J, et al. Progress in antimony capturing by superior materials: Mechanisms, properties and perspectives[J]. Chemical Engineering Journal,2021,419:130013. DOI: 10.1016/j.cej.2021.130013

    [78] 杨金辉, 李聪, 谢水波, 等. 铁锰层状双氢氧化物的制备及其对废水中Sb(III)的吸附行为[J]. 复合材料学报, 2022, 39(8):3878-3888.

    YANG Jinhui, LI Cong, XIE Shuibo, et al. Preparation of Fe-Mn layered double hydroxides and its adsorption behavior of antimony(Ⅲ) from wastewater[J]. Acta Materiae Compositae Sinica,2022,39(8):3878-3888(in Chinese).

    [79]

    REDDY D, LEE S M, YANG J K, et al. Characterization of binary oxide photoactive material and its application for inorganic arsenic removal[J]. Journal of Industrial & Engineering Chemistry,2014,20(5):3658-3662.

    [80]

    ZHU J, CHEN C, LI Y, et al. Rapid degradation of aniline by peroxydisulfate activated with copper-nickel binary oxysulfide[J]. Separation and Purification Technology,2019,209:1007-1015. DOI: 10.1016/j.seppur.2018.09.055

    [81]

    LI Y, ZHANG D, LI W, et al. Efficient removal of As(III) from aqueous solution by S-doped copper-lanthanum bimetallic oxides: Simultaneous oxidation and adsorption[J]. Chemical Engineering Journal,2020,384:123274. DOI: 10.1016/j.cej.2019.123274

    [82]

    AL-MALIKY E A, GZAR H A, AL-AZAWY M G. Determination of point of zero charge (PZC) of concrete particles adsorbents[J]. IOP Conference Series: Materials Science and Engineering,2021,1184(1):012004. DOI: 10.1088/1757-899X/1184/1/012004

    [83]

    SHAFIEE R M. Synthesis, characterization and adsorbing properties of hollow Zn-Fe2O4 nanospheres on removal of Congo red from aqueous solution[J]. Desalination, 2011, 280(1-3): 412-418.

    [84]

    KARAMIPOUR A, RASOULI N, MOVAHEDI M, et al. A kinetic study on adsorption of Congo red from aqueous solution by ZnO-ZnFe2O4-polypyrrole magnetic nanocomposite[J]. Physical Chemistry Research,2016,4(2):291-301.

    [85]

    LIU J, WONG L M, GURUDAYAL S, et al. Immobilization of dye pollutants on iron hydroxide coated substrates: Kinetics, efficiency and the adsorption mechanism[J]. Journal of Materials Chemistry A,2016,4(34):13280-13288. DOI: 10.1039/C6TA03088B

    [86]

    DOTAN H, SIVULA K, GRAETZEL M, et al. Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger[J]. Energy& Environmental Science,2011,4(3):958-964.

    [87]

    WU M, SU Z, FAN H, et al. New way of removing hydrogen sulfide at a high temperature: Microwave desulfurization using an iron-based sorbent supported on active coke[J]. Energy & Fuels,2017,31(4):4263-4272.

    [88]

    ALFRED A C, PATHMANATHAN S. Comparison of adsorption properties of commercial silica and rice husk ash (RHA) silica: A study by NIR spectroscopy[J]. Open Chemistry,2021,19(1):426-431. DOI: 10.1515/chem-2021-0044

    [89]

    NT A, UG B, MS A. Cellulose supported bismuth vanadate nanocomposite for effective removal of organic pollutant[J]. Journal of Environmental Chemical Engineering,2020,8(4):104027. DOI: 10.1016/j.jece.2020.104027

    [90]

    SAAA B, ADD E, KZ A, et al. Designing, structural determination and biological effects of rifaximin loaded chitosan-carboxymethyl chitosan nanogel[J]. Carbohydrate Polymers,2020,248(15):116782.

    [91]

    DING C, YANG X, LIU W, et al. Removal of natural organic matter using surfactant-modified iron oxide-coated sand[J]. Journal of Hazardous Materials, 2010, 174(1-3): 567-572.

    [92]

    NEAL R D, INOUE Y, HUGHES R A, et al. Catalytic reduction of 4-nitrophenol by gold catalysts: The influence of borohydride concentration on the induction time[J]. The Journal of Physical Chemistry C,2019,123(20):12894-12901. DOI: 10.1021/acs.jpcc.9b02396

    [93]

    XU L, HE Z, ZHANG H, et al. Production of aromatic amines via catalytic co-pyrolysis of lignin and phenol-formaldehyde resins with ammonia over commercial HZSM-5 zeolites[J]. Bioresource Technology,2020,320:124252.

    [94]

    WU D, RAN J, ZHONG S, et al. FeNi3/NiFe-mixed metal oxide heterostructured nanosheets for catalytic nitro-amination[J]. ACS Applied Nano Materials,2021,4(8):7739-7745. DOI: 10.1021/acsanm.1c00978

    [95]

    THEISS F L, COUPERTHWAITE S J, AYOKO G A, et al. A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides[J]. Journal of Colloid & Interface Science,2014,417:356-368.

    [96]

    GOH K H, LIM T T, DONG Z. Application of layered double hydroxides for removal of oxyanions: A review[J]. Water Research, 2008, 42(6-7): 1343-1368.

    [97]

    QIU X, SASAKI K, TAKAKI Y, et al. Mechanism of boron uptake by hydrocalumite calcined at different tempera-tures[J]. Journal of Hazard Mater,2015,287:268-277. DOI: 10.1016/j.jhazmat.2015.01.066

    [98]

    LIANG L, HE J, WEI M, et al. Uptake of chloride ion from aqueous solution by calcined layered double hydroxides: Equilibrium and kinetic studies[J]. Water Research,2006,40(4):735-743. DOI: 10.1016/j.watres.2005.11.043

    [99]

    PARKER L M, MILESTONE N B, NEWMAN R H. The use of hydrotalcite as an anion absorbent[J]. Industrial and Engineering Chemistry Research,1995,34(4):1196-1202. DOI: 10.1021/ie00043a023

    [100]

    SUN M, SU J, LIU S, et al. Simultaneous removal of nickel and phosphorus from spent electroless nickel plating wastewater via calcined Mg-Al-CO3 hydroxides[J]. RSC Advances,2015,5(99):80978-80989. DOI: 10.1039/C5RA12570G

    [101]

    SWATI S, SAXENA U. Development of bimetal oxide doped multifunctional polymer nanocomposite for water treatment[J]. Nano Letters,2016,4:223-234.

  • 期刊类型引用(2)

    1. 黄燕,唐嘉怀. 生物酶在纸质文物霉斑去除中的应用研究. 造纸科学与技术. 2024(09): 26-31 . 百度学术
    2. Qi Li,Lingfei Liu,Dejun Sun,Zhenghe Xu. Recent advances in switchable surfactants for heavy oil production:A review. Energy Geoscience. 2024(04): 79-92 . 必应学术

    其他类型引用(1)

图(5)  /  表(2)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  362
  • PDF下载量:  82
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-08-07
  • 修回日期:  2022-09-06
  • 录用日期:  2022-09-16
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2023-06-14

目录

/

返回文章
返回