配合条件对C/SiC在线铆接单元的力学性能影响

Effect of fit conditions on mechanical properties of C/SiC online riveting unit

  • 摘要: 针对化学气相沉积(CVI)工艺2D C/SiC材料制备热结构中大量采用的在线铆钉连接形式及地面试验中表现出的特点,研究了铆钉与平板开孔之间采用间隙或过盈配合不同形式对力学性能的影响。制备了典型含铆钉单元试件并进行了细观形貌观测,通过铆钉顶出试验得到了不同配合条件下顶出静强度及疲劳规律;通过不同配合条件下含铆钉试件与开孔试件的拉伸静强度试验,获得了C/SiC在线铆接导致的面内连接强度性能下降的规律;描述了纤维束变形和材料局部区域破坏的特点,并依据形貌观测开展了数值计算验证。在此基础上,针对C/SiC过盈配合铆接形式提出了考虑孔边应力集中影响的改进点应力失效准则。结果表明:过盈配合可以改善铆钉与平板之间的连接可靠性,显著提高铆钉顶出静强度和疲劳强度,但过盈配合铆接的工艺过程使得孔边局部碳布纤维产生挤压偏折变形并导致了孔边预应力。

     

    Abstract: According to the on-line rivet connection forms widely used in chemical vapor infiltration (CVI) process 2D-C/SiC thermal structures and characteristics shown in ground tests, the effects of different forms of clearance or interference fit between rivets and flat openings on mechanical properties were studied. A typical test piece with rivets was prepared and the microscopic morphology was observed. Through rivet push-out test, the push-out static strength and fatigue rules under different matching conditions were obtained. By comparing the tensile static strength of the specimens with rivets and the specimens with holes under different matching conditions, the rule of in-plane strength performance degradation caused by C/SiC online riveting was obtained. The characteristics of fiber bundle deformation, hole edge pre-stress and local area damage of materials were analyzed, and numerical modeling calculation was carried out according to morphology observation. Then, an improved point stress failure criterion (PSC) considering the effect of stress concentration at the hole edge was proposed for C/SiC interference fit riveting. Research shows that interference fit can improve the connection reliability between rivet and hole, significantly improve the push-out static strength and fatigue strength of rivet. But the interference fit riveting process makes the local carbon fiber at the hole edge extrude and deform, which leads to the prestress at the hole edge.

     

/

返回文章
返回