SiO2-NH2-GA-AAS/CS席夫碱复合涂层的制备和吸湿性能

Preparation and hygroscopic properties of SiO2-NH2-GA-AAS/CS Schiff base composite coating

  • 摘要: 为得到轻便的高吸湿材料,制备席夫碱(Schiff)复合涂层对基体材料亲水改性以提高吸湿性能。利用戊二醛(GA)作为中间体共价连接氨基化纳米二氧化硅(SiO2)和亲水物质2-(2-氨基乙基)氨基乙磺酸钠(AAS)制得席夫碱复合材料(SiO2-NH2-GA-AAS),将其分散在壳聚糖(CS)溶液中制得SiO2-NH2-GA-AAS / CS复合涂层。以高分子材料聚对苯二甲酸乙二酯醇(PET)作为基材,采用浸渍的方法将复合涂层涂覆在其表面进行改性。采用FTIR、场发射扫描电子显微镜配备能谱仪(FESEM-EDS)和接触角测量仪对涂覆复合涂层后的PET基材的微观形貌、元素分布及表面润湿性进行表征分析,并对吸附过程进行伪一级、伪二级动力学模型拟合。结果表明:当SiO2-NH2/AAS质量比为1∶2,SiO2-NH2-GA-AAS用量为10wt%时,改性后的PET基材吸湿性能最佳。FESEM-EDS显示改性后的PET基材表面较均匀地附着复合涂层且含有Schiff复合材料的特征元素,同时接触角从原始的135°变为0°,达到了超亲水效果。在25℃、97%相对湿度(RH)环境下,最优复合涂层改性后的PET基材在经过45 h吸湿后达到平衡,吸湿率高达36.94%,吸湿性能得到了极大的提高,整个吸附过程符合伪二级动力学模型。

     

    Abstract: To get lightweight, highly hygroscopic materials, Schiff base composite coating was prepared to hydrophilically modify the matrix material to improve the hygroscopic performance. Glutaraldehyde (GA) as an intermediate was used to covalently link aminated nano-silica (SiO2) and the hydrophilic substance 2-(2-aminoethyl)amino ethanesulfonate sodium (AAS) to prepare Schiff base composite material (SiO2-NH2-GA-AAS), and then the SiO2-NH2-GA-AAS / CS composite coating was prepared by dispersing it in chitosan (CS) solution. The polymer polyethylene terephthalate alcohol (PET) was used as the base material, and the composite coating was coated on its surface by dipping to modify it. FTIR, field emission scanning electron microscope equipped with energy dispersive spectrometer (FESEM-EDS) and contact angle measuring instrument were used to test the microscopic morphology, element distribution and surface wettability of the PET substrate coated with composite coating. The adsorption process was fitted with Pseudo-first-order and Pseudo-second-order kinetic models. The results show the modified PET substrate has the best hygroscopic performance when mass ratio of SiO2-NH2/AAS is 1∶2 and the amount of SiO2-NH2-GA-AAS is 10wt%. From the FESEM-EDS analysis, it can be seen that the surface of the modified PET substrate is coated with a uniform composite material, and the contact angle changes from the original 135° to 0°, achieving the super-hydrophilic effect. In the environment of 25℃, 97% relative humidity (RH), the PET substrate coated with the optimum composite coating reaches moisture saturation after 45 h of moisture absorption which reaches 36.94% moisture content. The moisture absorption performance has been extremely improved. The whole adsorption process conforms to the Pseudo-second-order kinetic model.

     

/

返回文章
返回