机织T字型加筋板复合材料的抗低速冲击性能

秦卓, 魏小玲, 胡晗, 欧阳屹伟, 谢军波, 龚小舟

秦卓, 魏小玲, 胡晗, 等. 机织T字型加筋板复合材料的抗低速冲击性能[J]. 复合材料学报, 2023, 40(6): 3673-3682. DOI: 10.13801/j.cnki.fhclxb.20220907.006
引用本文: 秦卓, 魏小玲, 胡晗, 等. 机织T字型加筋板复合材料的抗低速冲击性能[J]. 复合材料学报, 2023, 40(6): 3673-3682. DOI: 10.13801/j.cnki.fhclxb.20220907.006
QIN Zhuo, WEI Xiaoling, HU Han, et al. Low velocity impact resistance of woven fabric reinforced T-shaped composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3673-3682. DOI: 10.13801/j.cnki.fhclxb.20220907.006
Citation: QIN Zhuo, WEI Xiaoling, HU Han, et al. Low velocity impact resistance of woven fabric reinforced T-shaped composites[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3673-3682. DOI: 10.13801/j.cnki.fhclxb.20220907.006

机织T字型加筋板复合材料的抗低速冲击性能

详细信息
    通讯作者:

    龚小舟,博士,副教授,硕士生导师,研究方向为三维立体纺织织造 E-mail: 1493643391@qq.com

  • 中图分类号: TB332

Low velocity impact resistance of woven fabric reinforced T-shaped composites

  • 摘要: 为解决当前T字型铺层复合材料抗层间剪切能力弱的问题,通过对复合材料预制件织造工艺进行合理设计,使用SGA598小样织机织造了T字型织物,采用真空辅助树脂传递模塑(VARTM)工艺将其制备成复合材料,并研究其在低速冲击下的抗冲击性能;使用有限元软件ABAQUS建立了几何与材料模型,模拟了不同冲击能量下的冲击响应过程。研究结果表明,T字型加筋板具有较高的抗冲击能力,模拟结果与实验测试结果吻合较好,该有限元模型具有较好的可靠性。
    Abstract: In order to solve the problem of weak interlaminar shear resistance of T-shaped laminate composites, the weaving process of composite preform was reasonably designed, and the T-shaped fabric was woven by SGA598 small sample loom. The T-shaped fabric was prepared by vacuum assisted resin transfer molding (VARTM) process, and its impact resistance under low velocity impact was studied. The geometric and material models were established by using the finite element software ABAQUS to simulate the impact response process under different impact energies. The results show that the T-shaped stiffened plate has high impact resistance, and the simulation results are in good agreement with the experimental results. The finite element model has good reliability.
  • 图  1   T字型加筋板径向截面示意图

    Figure  1.   Warp section schematic diagram of T-shaped stiffened plate

    H—Total height of fabric; H1—Rib height of the stiffened plate; H2—Floor height; L—Bar width

    图  2   T字型加筋板试样

    Figure  2.   T-shaped stiffened plate specimen

    图  3   T字型加筋板截面与纱线屈曲状态

    Figure  3.   Warp section schematic diagram of T-shaped stiffened and yarn buckling state

    图  4   不同冲击能量下T型加筋板载荷峰值

    Figure  4.   Peak load of T-stiffened plate under different impact energies

    图  5   T型加筋板载荷-时间曲线

    Figure  5.   Load-time curves of T-stiffened plate

    图  6   T型加筋板吸收能量-时间曲线

    Figure  6.   Absorb energy-time curves of T-stiffened plate

    图  7   T型加筋板1/4冲击载荷与边界条件模型

    Figure  7.   1/4 impact load and boundary condition model of T-stiffened plate

    图  8   基体-纤维局部坐标系

    Figure  8.   Matrix-fiber local coordinate system

    图  9   宏观模型织物单胞结构

    Figure  9.   Macro-scale model fabric cell structure

    图  10   纱线局部坐标与单胞全局坐标

    Figure  10.   Yarn local coordinates and unit cell global coordinates

    W—Unit cell width; L—Unit cell length; L1—Weft width; L2—Binding width; W1—Warp width; W2—Binding length; H1—Weft height; H2—Warp height

    图  11   试验与有限元模拟(FEM)的机织T型加筋板载荷-时间曲线

    Figure  11.   Test and finite element modelling (FEM) load-time curves of woven T-stiffened plate

    EX—Text

    图  12   试验与FEM的机织T型加筋板收能量-时间曲线

    Figure  12.   Absorb energy-time curves of test and FEM of woven T-stiffened plate

    图  13   机织T型加筋板试验与有限元模拟冲击正面、背面图

    Figure  13.   Front and back view of impact of experiment and FEM of woven T-stiffened plate

    表  1   环氧树脂JC-03 A的规格和性能

    Table  1   Specifications and properties of epoxy resin JC-03 A

    Material functionNumerical value
    Density/(g·cm−3)1.12-1.14
    Tensile strength/MPa80
    Tensile modulus/MPa2400
    Bend strength/MPa130
    Flexural modulus/MPa3500
    Curing time/h5-7
    Thermal expansion coefficient/(10−6 −1)37
    Curing temperature/℃70
    下载: 导出CSV

    表  2   T型加筋板复合材料规格

    Table  2   Specifications of T-stiffened plate composites

    SpecificationNumerical value
    Length/mm150
    Width/mm 50
    Thickness of base plate/mm 5
    Rib height/mm 5
    下载: 导出CSV

    表  3   正交各向异性复合材料力学性能参数

    Table  3   Mechanical property parameters of orthotropic composites

    Elastic constantNumerical value
    Young's modulus, E1/MPa4644
    Young's modulus, E2/MPa5627
    Young's modulus, E3/MPa3705
    Shear modulus, G23/MPa1744
    Shear modulus, G13/MPa1633
    Shear modulus, G12/MPa1855
    Poisson’s ratio, ν230.32
    Poisson’s ratio, ν130.33
    Poisson’s ratio, ν120.19
    下载: 导出CSV

    表  4   机织T型加筋板 FEM与实验测试误差

    Table  4   FEM and experimental test error of woven T-stiffened plate

    Energy/JLoad peak error/%Maximum absorption
    energy error/%
    202.42.0
    304.43.6
    507.2−2.4
    802.6−1.5
    下载: 导出CSV
  • [1] 肖遥, 李东升, 吉康, 等. 大型复合材料航空件固化成型模具技术研究与应用进展[J]. 复合材料学报, 2022, 39(3):907-925.

    XIAO Yao, LI Dongsheng, JI Kang, et al. Research and application progress of curing tooling technology for large composite aeronautical components[J]. Acta Materiae Compositae Sinica,2022,39(3):907-925(in Chinese).

    [2] 马全胜, 李学臻, 王玉琳, 等. 三维立体织物复合材料研究与进展[J]. 化工新型材料, 2021, 49(S1):279-282.

    MA Quansheng, LI Xuezhen, WANG Yulin, et al. Rescarch and progress of 3D stereo fabric composite[J]. New Chemical Materials,2021,49(S1):279-282(in Chinese).

    [3]

    WANG C Z, SU D D, XIE Z F, et al. Low-velocity impact response of 3D woven hybrid epoxy composites with carbon and heterocyclic aramid fibres[J]. Polymer Testing,2021,101:107314. DOI: 10.1016/j.polymertesting.2021.107314

    [4] 蔚凤生. 浅谈复合材料在飞机上的设计及应用[J]. 军民两用技术与产品, 2015(8):116. DOI: 10.3969/j.issn.1009-8119.2015.08.107

    WEI Fengsheng. Design and application of composite materials in aircraft[J]. Dual Use Technologies & Products,2015(8):116(in Chinese). DOI: 10.3969/j.issn.1009-8119.2015.08.107

    [5] 吴承思, 李庆飞. 复合材料机身加筋壁板选型研究[J]. 纤维复合材料, 2016, 33(2):3-5. DOI: 10.3969/j.issn.1003-6423.2016.02.001

    WU Chengsi, LI Qingfei. Study about choice of stiffened structure configuration of laminated composite fuselage[J]. Fiber composites,2016,33(2):3-5(in Chinese). DOI: 10.3969/j.issn.1003-6423.2016.02.001

    [6]

    CHEN X, TAYLOR L W, TSAI L J. Three-dimensional fabric structures. Part 1—An overview on fabrication of three-dimensional woven textile preforms for composites[M]. Duxford: Woodhead Publishing Series in Textiles, 2016: 285-304.

    [7]

    CHOU S, CHEN H E. The weaving methods of three-dimensional fabrics of advanced composite materials[J]. Composite Structures,1995,33(3):159-172. DOI: 10.1016/0263-8223(95)00120-4

    [8] 欧阳天, 关志东, 谭日明, 等. 复合材料T型加筋板筋条冲击损伤及冲击后压缩行为试验 [J]. 复合材料学报. 2018. 35(10): 2689-2697.

    OUYANG Tian, GUAN Zhidong, TAN Riming, et al. Experimental study on stiffener impact damage and compression after impact behavior of T-stiffened composite panels[J]. Acta Materiae Compositae Sincia, 2018, 35(10): 2689-2697(in Chinese).

    [9] 崔勇江, 王斌团, 赵占文. 复合材料T型加筋壁板后屈曲承载能力研究[J]. 复合材料科学与工程, 2021(7):22-27.

    CUI Yongjiang, WANG Bintuan, ZHAO Zhanwen. Research on the post-buckling bearing capacity of T-type composite stiffened panel[J]. Composites Science and Engineering,2021(7):22-27(in Chinese).

    [10] 贾佳乐. 碳纤维复合材料加筋板低速冲击及其剩余压缩性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2021.

    JIA Jiale. Investigation on low velocity impact and residual compressive properties of reinforced composite skin[D]. Harbin: Harbin University of Science and Technology, 2021(in Chinese).

    [11] 唐振南, 戴瑛, 聂坤, 等. CFRP加筋板剪切稳定性试验和数值分析模型研究[J]. 力学季刊, 2015, 36(3):408-415.

    TANG Zhennan, DAI Ying, NIE Kun, et al. Shear stability test and numerical model study for carbon fiber reinforced composite stiffened plates[J]. Chinese Quarterly of Mechanics,2015,36(3):408-415(in Chinese).

    [12] 刘峰, 张成雷, 马佳, 等. 复合材料工字梁铺层结构设计及强度研究[J]. 机械科学与技术, 2016, 35(4):641-645. DOI: 10.13433/j.cnki.1003-8728.2016.0426

    LIU Feng, ZHANG Chenglei, MA Jia, et al. Laminate structure design and strength analysis of I-beam composite[J]. Mechanical Science and Technology for Aerospace Engineering,2016,35(4):641-645(in Chinese). DOI: 10.13433/j.cnki.1003-8728.2016.0426

    [13]

    HAO A, SUN B, QIU Y, et al. Dynamic properties of 3-D orthogonal woven composite T-beam under transverse impact[J]. Composites Part A: Applied Science & Manufacturing,2008,39(7):1073-1082.

    [14] 封端佩, 商元元, 李俊. 三维四向和五向编织复合材料冲击断裂行为的多尺度模拟[J]. 纺织学报, 2020, 41(10):67-73.

    FENG Duanpei, SHANG Yuanyuan, LI Jun. Multi-scale simulation of impact failure behavior for 4- and 5-directional 3D braided composites[J]. Journal of Textile Research,2020,41(10):67-73(in Chinese).

    [15] 胡美琪. 三维编织复合材料梁多次横向冲击损伤分布的结构效应和温度效应[D]. 上海: 东华大学, 2020.

    HU Meiqi. Structural effect and temperature effect on multiple transverse impact damage distributions in 3-D braided composite beams[D]. Shanghai: Donghua University, 2020(in Chinese).

    [16] 刘军, 刘奎, 宁博, 等. 三维编织复合材料T型梁的低温场弯曲性能[J]. 纺织学报, 2019, 40(12):57-62.

    LIU Jun, LIU Kui, NING Bo, et al. Bending properties of three-dimensional braided composite T-beam at low temperature[J]. Journal of Textile Research,2019,40(12):57-62(in Chinese).

    [17] 魏小玲, 李瑞雪, 秦卓, 等. 经向T结构预制体成型关键技术[J]. 纺织学报, 2021, 42(11):51-55.

    WEI Xiaoling, LI Ruixue, QIN Zhuo, et al. Key technologies for formation of warp T-shape preforms[J]. Journal of Textile Research,2021,42(11):51-55(in Chinese).

    [18] 邓奇林, 杨敏, 姚彧敏, 等. 三向正交预制体织造参数对C/C复合材料性能的影响[J]. 材料工程, 2022, 50(5):139-146.

    DENG Qilin, YANG Min, YAO Yumin, et al. Effect of three-directional orthogonal preform weaving parametes on properties of C/C composites[J]. Journal of Materials Engineering,2022,50(5):139-146(in Chinese).

    [19] 全国塑料制品标准化技术委员会. 硬质塑料板耐冲性能试验方法(落锤法): GB 11548—89[S]. 北京: 中国质检出版社. 1989.

    National Technical Committee for Standardization of Plastic Products. Standard text method for impact resistance of rigid plastic sheeting by means of a tup(falling weight): GB 11548—89[S]. Beijing: Chian Quality Inspection Press, 1989(in Chinese).

    [20]

    CHAMIS C C. Mechanics of composite materials: Past, present, and future[J]. Journal of Composites Technology & Research,1989,11(1):3-14.

    [21]

    SUN B Z, LIU Y K, GU B H. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite[J]. Composites Part B: Engineering,2009,40(6):552-560. DOI: 10.1016/j.compositesb.2009.01.012

    [22]

    HU M Q, SUN B Z, GU B H. Microstructure modeling multiple transverse impact damages of 3-D braided composite based on thermo-mechanical coupling approach[J]. Composites Part B: Engineering,2021,214:108741. DOI: 10.1016/j.compositesb.2021.108741

  • 期刊类型引用(12)

    1. 龙国文,曾开华,谢帮华,田海,邱智坚. 相变混凝土复合材料的性能研究综述及展望. 功能材料. 2024(10): 10038-10046 . 百度学术
    2. 陈春鸣,张燕,彭建山. 轻质相变混凝土物理力学性能研究进展. 化工新型材料. 2024(S2): 294-298 . 百度学术
    3. 肖桐,刘庆祎,张家豪,赵佳腾,刘昌会. 热固性树脂基复合相变材料的制备及其储能强化研究进展. 复合材料学报. 2023(03): 1311-1327 . 本站查看
    4. 张宇,恽定康,邱菊. 冻融循环下相变混凝土剪力墙抗震性能研究. 徐州工程学院学报(自然科学版). 2023(01): 42-49 . 百度学术
    5. 张家玮,黄玮,黄大建,李旭辉,马建虎,郑永. 基于微孔漂珠的相变微胶囊制备及其对砂浆力学和热性能影响. 复合材料学报. 2023(08): 4703-4719 . 本站查看
    6. 于文艳,殷凯. 复合相变蓄热涂层的蓄放热调温特性. 科学技术与工程. 2023(31): 13492-13498 . 百度学术
    7. 蔡昕辰,刘志彬,张云,白梅,刘锋. 相变材料在道路工程中的应用研究进展. 功能材料. 2021(12): 12013-12021 . 百度学术
    8. 周建庭,聂志新,郭增伟,杨娟,郑忠. 相变混凝土的制备与性能研究综述. 江苏大学学报(自然科学版). 2020(05): 588-595 . 百度学术
    9. 刘朋,缪正坤,田国华,刘伟,王东. 不同工况下陶粒吸附相变石蜡试验研究. 江苏科技信息. 2019(04): 44-46 . 百度学术
    10. 司亚余,马芹永,罗小宝,顾皖庆,白梅. 癸酸-正辛酸与活性炭复合相变材料的制备. 安徽理工大学学报(自然科学版). 2019(03): 66-72 . 百度学术
    11. 马芹永,白梅. 珍珠岩基相变骨料混凝土断裂特性试验与分析. 建筑材料学报. 2018(03): 365-369 . 百度学术
    12. 顾皖庆,马芹永,白梅,罗小宝,司亚余. 月桂醇膨胀珍珠岩复合相变材料吸附试验与分析. 科学技术与工程. 2018(25): 230-235 . 百度学术

    其他类型引用(21)

图(13)  /  表(4)
计量
  • 文章访问数:  965
  • HTML全文浏览量:  552
  • PDF下载量:  64
  • 被引次数: 33
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-15
  • 录用日期:  2022-08-25
  • 网络出版日期:  2022-09-06
  • 刊出日期:  2023-06-14

目录

    /

    返回文章
    返回