Thermal conductivity and electrical properties of three-dimensional porous aluminum nitride/epoxy composites
-
摘要: 环氧树脂(EP)是一种典型的电子封装绝缘材料,但其导热系数(小于0.2 W/(m·K))较低,提高其导热性是解决电子器件散热问题的有效办法。本文通过构筑三维多孔的氮化铝骨架(3D-AlN),制备得到3D-AlN/EP复合材料。SEM形貌和XRD物相表征结果证实3D-AlN骨架及3D-AlN/EP复合材料的成功制备。利用TGA精确测量3D-AlN骨架所占复合材料的质量分数,通过与含有不同含量随机分布的AlN/EP (Random AlN/EP)复合材料对比发现,3D-AlN/EP复合材料的导热系数要高于Random AlN/EP复合材料,45.48wt%3D-AlN/EP复合材料的室温(25℃)导热系数为1.00 W/(m·K),是纯EP(0.18 W/(m·K))的5.6倍。利用理论模型(Fogyel、Agari)计算复合材料的界面热阻,发现3D-AlN/EP复合材料相比于Random AlN/EP具有更低的填料与填料间界面热阻,分别为2.704×105 K·W−1、4.019×105 K·W−1。电性能测试结果表明,45.48wt%3D-AlN/EP复合材料具良好的介电性能及绝缘性能(体积电阻率为4.16×1011 Ω·cm)。本研究从封装绝缘材料改性角度为电子器件散热问题提供了一种有效解决方案。Abstract: Epoxy resin (EP) is a typical insulating material for electronic packaging, but its thermal conductivity (less than 0.2 W/(m·K)) is low, and improving its thermal conductivity is an effective way to solve the heat dissipation problem of electronic devices. In this paper, 3D-AlN/EP composites were prepared by constructing a three-dimensional porous aluminum nitride skeleton (3D-AlN). The SEM morphology and XRD phase characterization results confirmed the successful preparation of 3D-AlN skeleton and 3D-AlN/EP composites. The mass fraction of the composite accounted for by the 3D-AlN skeleton was precisely measured using TGA, and by comparing with different contents of random distribution AlN/EP (Random AlN/EP) composites, it was found that the thermal conductivity of 3D-AlN/EP composites was higher than that of Random AlN/EP composites, the thermal conductivity of the 45.48wt%3D-AlN/EP composite at room temperature (25℃) was 1.00 W/(m·K), which was 5.6 times higher than that of pure EP (0.18 W/(m·K)). The interfacial thermal resistance of the composites was calculated using the theoretical model (Fogyel, Agari), and it was found that the 3D-AlN/EP composites had lower filler-to-filler interfacial thermal resistance compared to Random AlN/EP, with 2.704×105 K·W−1 and 4.019×105 K·W−1, respectively. The electrical properties showed that the 45.48wt%3D-AlN/EP composite had good dielectric and insulating properties (volume resistivity is 4.16×1011 Ω·cm). This study provides an effective solution to the heat dissipation problem of electronic devices from the perspective of package insulation material modification.
-
电子器件正朝着小型化、大功率、低密度和高集成化方向发展,这些器件不断增加的功率密度也给其散热提出了更高要求,即电子器件功耗产生的更多热量未能及时耗散,将极大影响器件的使役性能及其安全稳定运行[1-2]。因此,高效的封装绝缘散热管理成为提升电子器件工作特性的关键途径之一。特别是高密度集成系统,用于快速发展的5G技术的高频印刷电路板(PCB)、新能源汽车的芯片模块系统、互联网人工智能系统正在寻求有效的热管理技术。同时,要求封装绝缘材料具有高绝缘性、低介电常数和低介电损耗,以降低信号传输的延迟、干扰和损耗[3-4]。大多数聚合物材料可以满足上述部分性能,但聚合物材料由于声子散射而表现出较低的导热性[5],极大的阻碍了其实际应用。为了满足高导热要求,将无机高导热填料加入聚合物基体中,获得填充型导热复合材料是一种有效解决方法[6-8]。基于随机共混制备的聚合物基复合材料通常需要高含量的填料来构筑高导热网络[9]。然而,高填充量会导致复合材料的绝缘性能劣化,力学性能变差,加工复杂性和成本均有所升高。随着国内外研究的不断深入,构筑三维(3D)连续导热网络结构成为当前提升聚合物封装绝缘材料导热性能的重要设计思路之一[10-11]。目前,在3D网络结构填料的制备方面已有较多研究报道[12-14]。Li等[15]使用Al2O3颗粒构建了三维导热网络,制备了Al2O3/硅橡胶复合材料,含量为69.6wt%时,复合材料的导热系数为1.253 W/(m·K)。Wang等[16]使用不同直径的碳纤维与BN协同构建了三维导热网络并制备了环氧树脂复合材料,5vol% 10 mm碳纤维和40vol%BN掺杂改性的EP复合材料其导热系数达到3.1 W/(m·K)。以上研究对环氧树脂的导热性能提升效果显著,但对其掺杂改性的复合材料的绝缘性与介电性能鲜有关注。
为了同时兼顾复合材料的导热与电绝缘性,通常选择Al2O3颗粒、AlN颗粒、SiC颗粒、BN纳米片等作为功能填料,其导热系数分别为30、260、83.6、30~330 W/(m·K)[17-20]。对比发现,Al2O3颗粒与SiC颗粒的导热系数略低,同时SiC还具有半导体的特性。BN纳米片的导热系数有面内面外之分,面内方向较高、面外方向较低,同时不同层数的BN纳米片的导热系数也不尽相同,层数越少其导热越好,因此也有大量的工作来进行BN纳米片的剥离[21-23],使其导热效果更优异,但剥离工艺较为复杂。AlN 颗粒作为导热填料具有各向同性、拥有高导热率、优异的电绝缘性能、成本低等优势,因此本实验选用AlN颗粒作为填料。利用凝胶多糖在高温下的不可逆凝胶反应[24],选用葵基葡糖苷作为发泡剂、造孔剂,通过冷冻干燥构筑了三维多孔的AlN骨架(3D-AlN),利用真空浸渍环氧树脂制备了3D-AlN/EP复合材料,当AlN含量为45.48wt%时,复合材料的室温(25℃)导热系数为1.00 W/(m·K),是纯EP(0.18 W/(m·K))的5.6倍。同时具有良好的介电性能及绝缘性能(体积电阻率为4.16×1011 Ω·cm)。
1. 实验
1.1 原材料
本实验使用南通星辰合成材料有限公司生产的环氧树脂(EP):型号为WSR618,作为基体;固化剂为甲基六氢苯酐,源于常州润翔化工;促进剂为2, 4, 6-三(二甲氨基甲基)苯酚,源于麦克林化学试剂有限公司;使用AlN作为导热填料:粒径大小为3~5 μm,源于阿拉丁化学试剂有限公司;葵基葡糖苷(APG-0810,纯度50%)作为发泡剂,凝胶多糖(Curdlan)在溶液发泡后起到凝胶的作用,源于上海麦克林生化科技有限公司。
1.2 3D-AlN及3D-AlN/EP的制备
如图1所示,将0.5 g APG-0810、1 g Curdlan和不同量的AlN加入装有50 mL去离子水的烧杯中,机械搅拌0.5 h,待分散均匀后,将装有混合物的烧杯放置水浴锅中,加热至85℃,将转速提高到1500 r/min,持续一段时间,待体积增加到满烧杯即发泡完成。随后将混合物快速倒入模具中,待温度降至室温后得到AlN水凝胶。最后将水凝胶放入冷冻干燥机,干燥完成后即得到3D-AlN。
将环氧树脂、固化剂、促进剂按质量比100∶8∶1进行配比,混合均匀后浇筑到3D-AlN骨架上,使用真空辅助浸渍24 h,之后使用平板硫化仪(120℃、2 h)进行固化。最终得到3D-AlN/EP复合材料。为了对比同时制备了随机分布的10wt%、20wt%、30wt%、40wt%、50wt% AlN/EP复合材料,对应的体积分数百分比依次为3.91vol%、8.38vol%、13.56vol%、19.61vol%、26.67vol%。
1.3 表征与测试
本实验使用扫描电子显微镜(SEM,日本日立高新技术公司生产,SU8020)对3D-AlN骨架及3D-AlN/EP复合材料断面进行观察。热失重分析仪(TGA,北京精仪高科仪器有限公司,ZCT-B)对3D-AlN/EP复合材料的填充含量进行测试。X射线衍射仪(XRD,荷兰帕纳科,锐影)对AlN及3D-AlN/EP复合材料进行物相分析。激光导热仪(德国耐驰,LFA447)对3D-AlN/EP复合材料热扩散系数(α)进行测试,根据导热公式λ=αCpρ,其中Cp为比热,ρ为密度,计算得到复合材料的导热系数λ。差示扫描量热仪(DSC,梅特勒,DSC-1)对复合材料的玻璃化转变温度进行测试。红外热成像仪(FLIR,E6)对复合材料传热成像进行采集。Comsol multiphysics固体传热进行复合材料的传热仿真分析。宽频介电谱(德国Novocontrol公司,Alpha-A)对复合材料的介频谱进行测试。电流皮安表(Keithley 6517B)及高压直流电源组建的三电极系统测试复合材料的体积电阻率。
2. 实验结果
利用SEM对制备的3D-AlN骨架及3D-AlN/EP复合材料断面进行观察,结果如图2所示。图2(a)中观察到3D-AlN骨架为多孔结构,孔径尺寸不一,范围在200~500 μm,图2(b)为图2(a)的局部放大图,在靠近表面的较大孔洞之下仍有其余孔洞存在,说明3D-AlN呈现多孔立体骨架结构且构筑成功。图2(c)为3D-AlN/EP复合材料的断面SEM图像。可以看到EP树脂充满3D-AlN孔洞,骨架外轮廓清晰可见,界面无缺陷和空隙的存在,证明了3D-AlN/EP复合材料的成功制备。图2(d)和图2(e)为对应于图2(c)的能谱及元素分布。其中Al、N元素来源于3D-AlN骨架,C、O元素来源于EP,Al、N元素呈现连续分布,进一步证实导热骨架的结构连续性,将更有利于导热性能提升。
通过热失重测试来确定3D-AlN骨架占复合材料的质量分数,如图3(a)所示,测试在空气气氛下进行,取样0~10 mg,升温速率为10℃/min,温度范围为室温~800℃。可以看到纯EP热失重曲线为两步分解,其中第一步在200~480℃是环氧树脂侧链的热氧化,与主链的碳化;第二步在480~600℃是碳化的主链分解[25-26],到800℃时质量全部损失,而复合材料到800℃时剩余质量计为AlN填料含量,依次为16.96wt%、23.89wt%、35.30wt%、45.48wt%。为方便后续理论模型计算需要,在此将质量分数百分比换算为体积分数,依次为6.96vol%、10.30vol%、16.65vol%、23.39vol%。
利用XRD对AlN及3D-AlN/EP复合材料进行物相结构表征,如图3(b)所示,AlN的主要特征衍射峰在2θ=33.237°、36.041°、37.949°,分别对应于(100)、(002)、(102)晶面,与标准卡片96-901-1658吻合。由于EP属于非晶无定形态,其特征衍射峰为“馒头包状”出现在2θ=10°~20°附近。3D-AlN/EP复合材料中,随着AlN的含量增加,其特征衍射峰强度逐渐增加。同时复合材料中除AlN与EP的特征衍射峰再无其他杂峰,说明3D-AlN/EP复合材料的制备为物理掺杂,并无其他物质生成。
不同AlN含量的复合材料在25℃时导热系数如图4(a)所示,随着AlN含量的增加,复合材料的导热系数逐渐增加。同时,3D-AlN/EP复合材料的导热系数要高于Random AlN/EP。45.48wt% 3D-AlN/EP复合材料的导热系数为1.00 W/(m·K),是纯EP(0.18 W/(m·K))的5.6倍。复合材料的导热系数受制于材料内部的填料与填料和填料与基体之间的界面热阻。其中填料与基体的界面热阻是由于不同物质固有的声子振动差异造成的,而填料与填料的界面热阻则取决于填料的分布状态。在具有三维多孔结构填料的复合材料中,填料与填料的界面热阻对整体的导热系数具有更大的影响。因此,采用非线性Fogyel模型来计算AlN填料之间的界面热阻,进一步研究填料的分布状态对填料间的界面热阻的影响[27]。如下式所示:
图 4 (a) 不同3D-AlN含量的随机分布AlN/EP及3D-AlN/EP复合材料的导热系数及Foygel非线性拟合;(b) Agari模型线性拟合;(c) 不同3D-AlN含量3D-AlN/EP复合材料导热系数随温度变化的曲线;(d) 不同3D-AlN含量3D-AlN/EP复合材料的DSC图谱Figure 4. (a) Thermal conductivity and Foygel nonlinear fit of randomly distributed AlN/EP and 3D-AlN/EP composites with different contents of 3D-AlN; (b) Linear fit of Agari model; (c) Thermal conductivity curves of 3D-AlN/EP composites with different contents of 3D-AlN as a function of temperature; (d) DSC spectra of 3D-AlN/EP composites with different contents of 3D-AlNCf—Ability of the filler to form continuity; Cm—Effect of the filler on the structure of the matrix; λ—Thermal conductivity of compositesλ−λm=K0(Vf−Vc1−Vc)β (1) 其中:λ为复合材料的导热系数;λm为基体的导热系数;K0为指前因子;Vf为AlN填料的体积分数;Vc为AlN填料的临界体积分数;β为与导热系数有关的幂指数。
通过将实验数据进行非线性拟合可以得到Vc,将式(1)取对数可得到下式:
lg(λ−λm)=βlgK0+βlg(Vf−Vc1−Vc) (2) 根据式(2)进一步线性拟合可以得到K0、β,根据下式:
Rc=1K0LVβc (3) 可以得到复合材料内部填料与填料之间的界面热阻值Rc,L为AlN填料的尺寸,为5 μm。拟合计算结果如表1所示,可知随机分布的AlN/EP复合材料中填料间的界面热阻为4.019×105 K·W−1,而3D-AlN/EP复合材料中填料间的界面热阻为2.704×105 K·W−1,三维多孔结构的AlN极大地促进热量在复合材料内部的传递。
表 1 随机分布的AlN/EP和3D-AlN/EP复合材料的参数计算结果Table 1. Calculation results of parameters for Random AlN/EP and 3D-AlN/EP compositesComposites K0 Vc/vol% β Rc/(105 K·W−1) Random AlN/EP 3.412 0.0994 0.83392 4.019 3D-AlN/EP 3.615 0.0597 0.56296 2.704 Notes: K0—Pre-exponential factor; Vc—Critical volume fraction of filler; β—Conductivity exponent that depends on the aspect of filler; Rc—Interface thermal resistance. 进一步,应用Agari模型计算分析了复合材料内部的填料连续性[28]。其公式如下所示:
lgλ=VfCflgλf+(1−Vf)lg(Cmλm) (4) 其中:Cf代表AlN填料形成连续性的能力;Cm代表AlN填料对于环氧树脂结构的影响。结果如图4(b)所示,随机分布的AlN/EP复合材料的Cf和Cm分别为0.765、0.977,而3D-AlN/EP复合材料的Cf和Cm分别为1.070、1.123,可见填料的分布状态对Cm影响不大,而对Cf影响较大,3D-AlN/EP复合材料具有更大的Cf,表明其填料具有很好的连续性,更有利于热量传输。
图4(c)为不同含量3D-AlN/EP复合材料导热系数随测试温度变化的曲线。可以看到随温度的增加,复合材料的导热系数有所增加,这是由于随温度的升高,分子链的热运动加速了填料与填料之间和填料与基体之间的热扩散系数。图4(d)为不同3D-AlN含量3D-AlN/EP复合材料的DSC图谱。升温至170℃高温并无放热峰出现,说明环氧树脂是固化完全的,同时随AlN含量的增加,复合材料的玻璃化转变温度有所增加,这是由于AlN填料在环氧树脂固化过程限制了环氧树脂分子链的移动,从而提高了环氧复合材料的玻璃化转变温度。
为了进一步研究所制备的高导热3D-AlN/EP复合材料在实际工作过程中的传热效果,通过红外热成像仪实时记录了复合材料在升温过程中的表面温度变化情况,如图5(a)所示,采集过程为每3 s进行一次,将复合材料同时放到温度为90℃的平板加热台面上,所处环境为室温(23±2)℃。可以看到,在0 s时复合材料表面的初始温度一致,随着时间延长,45.48wt%3D-AlN/EP复合材料的表面温度更高一些,是由于其导热系数最大,可以将更多热量从底部传递到表面。同时利用Comsol multiphysics固体传热仿真验证三维多孔骨架结构对于促进热量传输的优势,如图5(b)~5(c)所示,分别为随机分布AlN/EP和3D-AlN/EP复合材料的固体传热仿真结果,仿真为瞬态过程,下边界设置为120℃,左右边界为热绝缘,上边界设置为25℃环境温度,环氧树脂基体导热系数设置为0.18 W/(m·K),AlN填料导热系数设置为260 W/(m·K),可以看到3D-AlN/EP复合材料的整体温度更高一些,说明具有三维结构的导热网络更有利于热量传递。
对于高频电子器件的封装绝缘材料而言,对其低介电常数和低介电损耗也有着严格要求,相关介电性能对于降低信号传输的延迟、失真与能量损失具有重要作用[29]。图6给出了3D-AlN/EP复合材料的介电常数与介电损耗随频率变化的关系。随着AlN含量的增加,复合材料的介电常数和介电损耗增加,这是由于AlN本征介电常数约为8.5~9,远高于纯EP。此外填充AlN填料也促进了复合材料的界面极化效应,填料越多,填料与基体的界面越多,界面极化越显著,因此在低频10~100 Hz时,45.48wt%3D-AlN/EP复合材料的介电常数与其他含量的介电常数相比增加更明显,随着频率的增加,这个差距逐渐变小,是由于随频率的增加,界面极化等松弛极化来不及建立,进而差距缩小,同时介电常数及介电损耗降低。
对于封装绝缘材料来说,绝缘性是保证电子器件安全运行的重要保障[30],在实际工业生产中,环氧树脂基绝缘复合材料的电阻率值要超过电绝缘的下线(体电阻率≥109 Ω·cm)[31-32]。图7给出了不同3D-AlN含量3D-AlN/EP复合材料的体积电阻率测试结果。复合材料的体积电阻率要低于纯EP,并随3D-AlN含量的增加而降低,这主要是由于3D-AlN互联网络的搭建也有利于电子的迁移。45.48wt%3D-AlN/EP复合材料的体积电阻率为4.16×1011 Ω·cm,具有很高的绝缘裕度,能够满足封装材料的绝缘要求。
3. 结 论
成功构筑了具有三维多孔AlN导热网络结构,获得了兼具良好导热性和电绝缘性能的环氧树脂(EP)基复合材料,主要结论有:
(1) 对比分析随机分布的AlN/EP和3D-AlN/EP复合材料导热系数测试结果,发现具有3D-AlN的复合材料的导热系数要高于随机分布的AlN/EP复合材料。45.48wt%3D-AlN/EP复合材料的导热系数为1.00 W/(m·K),是纯EP(0.18 W/(m·K))的5.6倍;
(2) 理论模型(Fogyel、Agari)计算结果表明,3D-AlN/EP复合材料与随机分布的AlN/EP复合材料相比具有更低的填料与填料间界面热阻,分别为2.704×105 K·W−1、4.019×105 K·W−1,同时3D-AlN填料具有更好的结构连续性,有利于热量传递;
(3) 随3D-AlN含量的增加,复合材料的玻璃化转变温度增加,介电常数和介电损耗也逐渐增加。随着频率的增加,复合材料的介电常数和介电损耗逐渐降低;
(4) 复合材料的体积电阻率要低于纯EP,并随3D-AlN含量的增加而降低,但仍保持良好的绝缘性,如45.48wt%3D-AlN/EP复合材料的体积电阻率为4.16×1011 Ω·cm。
-
图 2 (a) 3D-AlN骨架的SEM图像;(b) 图2(a)的局部放大SEM图像;(c) 3D-AlN/EP复合材料的SEM图像;((d), (e)) 对于图2(c)的能谱及元素分布
Figure 2. (a) SEM image of 3D-AlN framework; (b) Partially enlarged SEM image according to Fig. 2(a); (c) SEM image of 3D-AlN/EP composite; ((d), (e)) Energy spectrum and element distribution according to Fig. 2(c), respectively
图 4 (a) 不同3D-AlN含量的随机分布AlN/EP及3D-AlN/EP复合材料的导热系数及Foygel非线性拟合;(b) Agari模型线性拟合;(c) 不同3D-AlN含量3D-AlN/EP复合材料导热系数随温度变化的曲线;(d) 不同3D-AlN含量3D-AlN/EP复合材料的DSC图谱
Figure 4. (a) Thermal conductivity and Foygel nonlinear fit of randomly distributed AlN/EP and 3D-AlN/EP composites with different contents of 3D-AlN; (b) Linear fit of Agari model; (c) Thermal conductivity curves of 3D-AlN/EP composites with different contents of 3D-AlN as a function of temperature; (d) DSC spectra of 3D-AlN/EP composites with different contents of 3D-AlN
Cf—Ability of the filler to form continuity; Cm—Effect of the filler on the structure of the matrix; λ—Thermal conductivity of composites
表 1 随机分布的AlN/EP和3D-AlN/EP复合材料的参数计算结果
Table 1 Calculation results of parameters for Random AlN/EP and 3D-AlN/EP composites
Composites K0 Vc/vol% β Rc/(105 K·W−1) Random AlN/EP 3.412 0.0994 0.83392 4.019 3D-AlN/EP 3.615 0.0597 0.56296 2.704 Notes: K0—Pre-exponential factor; Vc—Critical volume fraction of filler; β—Conductivity exponent that depends on the aspect of filler; Rc—Interface thermal resistance. -
[1] ZHANG T, YANG L, ZHANG C, et al. Polymer dielectric films exhibiting superior high-temperature capacitive performance by utilizing an inorganic insulation interlayer[J]. Materials Horizons,2022,9(4):1273-1282. DOI: 10.1039/D1MH01918J
[2] XUX, CHEN J, ZHOU J, et al. Thermal conductivity of polymers and their nanocomposites[J]. Advanced Materials,2018,30(17):1705544.
[3] CHENG Y L, LEE C Y, HUNG W J, et al. Comparison of various low dielectric constant materials[J]. Thin Solid Films,2018,660:871-878. DOI: 10.1016/j.tsf.2018.02.042
[4] ZENG X, YE L, GUO K, et al. Fibrous epoxy substrate with high thermal conductivity and low dielectric property for flexible electronics[J]. Advanced Electronic Materials,2016,2(5):1500485. DOI: 10.1002/aelm.201500485
[5] CHI Q G, ZHANG X L, WANG X B, et al. High thermal conductivity of epoxy-based composites utilizing 3D porous boron nitride framework[J]. Composites Communications,2022,33:101195.
[6] 吴加雪, 唐超, 张天栋, 等. 氮化硼和氧化锌晶须共掺杂环氧树脂复合材料的导热与电性能[J]. 复合材料学报, 2022, 39(5):2157-2165. WU Jiaxue, TAO Chao, ZHANG Tiandong, et al. Thermal conductivity and electrical property of epoxy composites mixed with boron nitride and zinc oxide whisker[J]. Acta Materiae Compositae Sinica,2022,39(5):2157-2165(in Chinese).
[7] WANG S, HE H, LI Q, et al. Improving thermal conductivity of ethylene-vinyl acetate composites by covalent bond-connected carbon nanotubes@ boron nitride hybrids[J]. Composites Communications,2022,29:100986. DOI: 10.1016/j.coco.2021.100986
[8] CHEN C, XUE Y, LI Z, et al. Construction of 3D boron nitride nanosheets/silver networks in epoxy-based composites with high thermal conductivity via in-situ sintering of silver nanoparticles[J]. Chemical Engineering Journal,2019,369:1150-1160. DOI: 10.1016/j.cej.2019.03.150
[9] KUANG Z, CHEN Y, LU Y, et al. Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity[J]. Small,2015,11(14):1655-1659. DOI: 10.1002/smll.201402569
[10] XU X, HU R, CHEN M, et al. 3D boron nitride foam filled epoxy composites with significantly enhanced thermal conductivity by a facial and scalable approach[J]. Chemical Engineering Journal,2020,397:125447. DOI: 10.1016/j.cej.2020.125447
[11] LIU X, ZHOU H, WANG Z, et al. Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity[J]. Composites Science and Technology,2022,220:109289. DOI: 10.1016/j.compscitech.2022.109289
[12] DU G, LAI X, HU J, et al. Construction of high thermal conductive boron nitrid@chitosan aerogel/paraffin composite phase change materia[J]. Solar Energy Materials and Solar Cells,2022,240:111532. DOI: 10.1016/j.solmat.2021.111532
[13] HE J, WANG H, GONG Y, et al. A novel three-dimensional boron phosphide network for thermal management of epoxy composites[J]. Composites Part B: Engineering,2022,233:109662. DOI: 10.1016/j.compositesb.2022.109662
[14] LUO J, YANG X, TUSIIME R, et al. Synergistic effect of multiscale BNs/CNT and 3D melamine foam on the thermal conductive of epoxy resin[J]. Composites Communications,2022,29:101044.
[15] LI S J, LI J C, JI P Z, et al. Bubble-templated construction of three-dimensional ceramic network for enhanced thermal conductivity of silicone rubber composites[J]. Chinese Journal of Polymer Science,2021,39(7):789-795. DOI: 10.1007/s10118-021-2581-4
[16] WANG Y, GAO Y, TANG B, et al. Epoxy composite with high thermal conductivity by constructing 3D-oriented carbon fiber and BN network structure[J]. RSC Advances,2021,11(41):25422-25430. DOI: 10.1039/D1RA04602K
[17] YOON H, MATTEINI P, HWANG B. Review on three-dimensional ceramic filler networking composites for thermal conductive applications[J]. Journal of Non-Crystalline Solids,2022,576:121272. DOI: 10.1016/j.jnoncrysol.2021.121272
[18] OUYANG Y, BAI L, TIAN H, et al. Recent progress of thermal conductive ploymer composites: Al2O3 fillers, properties and application s[J]. Composites Part A: Applied Science and Manufacturing,2022,152:106685. DOI: 10.1016/j.compositesa.2021.106685
[19] LIANG D, REN P, REN F, et al. Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix[J]. Journal of Polymer Research,2020,27(8):1-12.
[20] LI J, LI F, ZHAO X, et al. Jelly-inspired construction of the three-dimensional interconnected BN network for lightweight, thermally conductive, and electrically insulating rubber composites[J]. ACS Applied Electronic Materials,2020,2(6):1661-1669. DOI: 10.1021/acsaelm.0c00227
[21] HAN G, ZHANG D, KONG C, et al. Flexible, thermostable and flame-resistant epoxy-based thermally conductive layered films with aligned ionic liquid-wrapped boron nitride nanosheets via cyclic layer-by-layer blade-casting[J]. Chemical Engineering Journal,2022,437:135482. DOI: 10.1016/j.cej.2022.135482
[22] TIAN R, JIA X, LAN M, et al. Efficient exfoliation and functionalization of hexagonal boron nitride using recyclable ionic liquid crystal for thermal management applications[J]. Chemical Engineering Journal,2022:137255.
[23] LI Y, HUANG T, CHEN M, et al. Simultaneous exfoliation and functionalization of large-sized boron nitride nanosheets for enhanced thermal conductivity of polymer composite film[J]. Chemical Engineering Journal,2022,442:136237. DOI: 10.1016/j.cej.2022.136237
[24] El-NAGGAR M E, ABDELAGWAD A M, TRIPATHI A, et al. Curdlan cryogels reinforced with cellulose nanofibrils for controlled release[J]. Journal of environmental chemical engineering,2017,5(6):5754-5761. DOI: 10.1016/j.jece.2017.10.056
[25] QI Y, WANG J, KOU Y, et al. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock[J]. Nature Communications,2019,10(1):1-9. DOI: 10.1038/s41467-018-07882-8
[26] WEI Z, XIE W, GE B, et al. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements[J]. Composites Science and Technology,2020,199:108304. DOI: 10.1016/j.compscitech.2020.108304
[27] XIAO C, GUO Y, TANG Y, et al. Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/boron nitride nanosheets[J]. Composites Part B: Engineering,2020,187:107855. DOI: 10.1016/j.compositesb.2020.107855
[28] XIAO C, CHEN L, TANG Y, et al. Three dimensional porous alumina network for polymer composites with enhanced thermal conductivity[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105511. DOI: 10.1016/j.compositesa.2019.105511
[29] LI R, YANG X, LI J, et al. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging[J]. Materials Today Physics,2021,22:100594.
[30] GU J, XU S, ZHUANG Q, et al. Hyperbranched polyborosilazane and boron nitride modified cyanate ester composite with low dielectric loss and desirable thermal conductivity[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2017,24(2):784-790.
[31] HAN Y, SHI X, WANG S, et al. Nest-like hetero-structured BNNS@SiC NWs fillers and significant improvement on thermal conductivities of epoxy composites[J]. Composites Part B: Engineering,2021,210:108666. DOI: 10.1016/j.compositesb.2021.108666
[32] SHI X, ZHANG R, RUAN K, et al. Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers[J]. Journal of Materials Science & Technology,2021,82:239-249.
-
期刊类型引用(5)
1. 赵中国,王筹萱,薛嵘,申思扬. 聚乙二醇基相变复合材料杂化网络结构的设计及其光-电-热转换性能. 复合材料学报. 2024(07): 3609-3619 . 本站查看
2. 刘大猷,黄彦卓,刘怀东,杨航,金海云. 氮化硅晶须骨架增强环氧复合材料导热与介电性能. 中国电机工程学报. 2024(23): 9475-9484 . 百度学术
3. 石贤斌,张帅,陈超,聂向导,班露露,赵亚星,刘仁,桑欣欣. 氮化硼纳米片的绿色制备及其在导热复合材料中的应用. 复合材料学报. 2023(08): 4558-4567 . 本站查看
4. 查俊伟,李鑫,万宝全,董晓迪,郑明胜. 氮化硼改性聚合物基高导热复合材料研究进展. 高电压技术. 2023(09): 3625-3639 . 百度学术
5. 杨李懿,葛凡,汪蔚,冉涛,李艳飞. Al_2O_3-Sn_(57)Bi_(43)/环氧树脂复合材料的导热及电性能. 复合材料学报. 2023(11): 6110-6118 . 本站查看
其他类型引用(6)
-