Abstract:
Poly(N-isopropylacrylamide) (PNIPAM), which contains both hydrophilic amide and hydrophobic isopropyl groups, is one of the most widely used temperature-sensitive polymers, and its related products have promising applications in the fields of tissue engineering, medical care and smart fabrics. In this study, PNIPAM was successfully synthesized by free radical polymerization, and PNIPAM was prepared into temperature-sensitive nano-membranes by electrospinning technology innovatively. Then, we tried to copolymerize polyethylene glycol methyl ether (mPEG) and PNIPAM in different proportions to investigate the performance of PNIPAM-co-mPEG. The results showed that the temperature-sensitive nano-membranes exhibited significant hydrophilic and hydrophobic transitions with temperature changes. Compared with the pure PNIPAM temperature-sensitive nano-membranes, the mechanical properties of the PNIPAM-co-mPEG were significantly improved, and it could maintain the inherent fiber morphology under the condition of large water absorption and swelling. The residual weight rate and the initial decomposition temperature of PNIPAM-co-mPEG are increased by 321% and 240%, respectively. The water contact angle of PNIPAM-co-mPEG at room temperature decreases by more than 16°, which improves the hydrophilicity to a certain extent. Moreover, the low critical solution temperature of PNIPAM-co-mPEG is increased from 31.7℃ to 43.6℃, the temperature-sensitive range is expanded.