BN和Al2O3@BaTiO3纤维协同改性聚偏氟乙烯复合材料的介电与导热性能

Dielectric property and thermal conductivity of polyvinylidene fluoride composites modified by BN and Al2O3@BaTiO3 fibers

  • 摘要: 对于介电储能材料,兼具高介电、高击穿和高导热的研究备受关注。本文采用高温煅烧制备羟基化氮化硼纳米片(BN)和静电纺丝制备负载氧化铝的钛酸钡纤维(Al2O3@BaTiO3),共同填充聚偏氟乙烯(PVDF)并流延热压获得复合材料,研究了BN和Al2O3@BaTiO3协同作用对PVDF基复合材料结构和性能的影响。结果表明,Al2O3@BaTiO3纤维能够桥接BN纳米片,使复合填充的BN-Al2O3@BaTiO3/PVDF材料表现出优于纯PVDF和BN/PVDF的力学、介电及导热性能。随着Al2O3@BaTiO3纤维含量增加,BN-Al2O3@BaTiO3/PVDF材料的介电常数和导热系数增大,拉伸强度和击穿场强先增大后减小。当Al2O3@BaTiO3含量为5wt%时,BN-Al2O3@BaTiO3/PVDF复合材料的击穿场强最大达到253.9 kV/mm,是纯PVDF的2.43倍;此时拉伸强度、介电常数(1 kHz)和导热系数也提升至41.23 MPa、12.1和0.508 W/(m·K),较纯PVDF分别提高了10.8%、44.0%和185.4%。

     

    Abstract: The research on dielectric energy storage materials with high dielectric constant, breakdown strength and thermal conductivity has attracted much attention. In this paper, the hydroxylated boron nitride nanosheets (BN) prepared by high-temperature calcination and the barium titanate fibers loading alumina particles (Al2O3@BaTiO3) prepared by electrospinning were used to fill polyvinylidene fluoride (PVDF), and the composites were obtained by casting and hot-pressing. The synergistic effect of BN and Al2O3@BaTiO3 on the structure and properties of PVDF matrix composites was investigated. The results show that the Al2O3@BaTiO3 fibers can bridge the BN nanosheets, making the BN-Al2O3@BaTiO3/PVDF composites exhibit improved mechanical, dielectric properties and thermal conductivity in comparison with pure PVDF and BN/PVDF composites. With the increase of Al2O3@BaTiO3 fibers content, the dielectric constant and thermal conductivity of BN-Al2O3@BaTiO3/PVDF material increase, while the tensile strength and breakdown strength increase first and then decrease. When the content of Al2O3@BaTiO3 is 5wt%, the breakdown strength of BN-Al2O3@BaTiO3/PVDF composites reaches the highest value of 253.9 kV/mm, which is 2.43 times that of pure PVDF. Meanwhile, the tensile strength, dielectric constant and thermal conductivity are raised to 41.23 MPa, 12.1@1 kHz and 0.508 W/(m·K), also 10.8%, 44.0% and 185.4% higher than those of pure PVDF, respectively.

     

/

返回文章
返回