Processing math: 0%

氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性

赵亚梅, 曹婷婷, 张鹏远, 霍梦丹, 张兴龙

赵亚梅, 曹婷婷, 张鹏远, 等. 氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性[J]. 复合材料学报, 2023, 40(6): 3405-3416. DOI: 10.13801/j.cnki.fhclxb.20220822.003
引用本文: 赵亚梅, 曹婷婷, 张鹏远, 等. 氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性[J]. 复合材料学报, 2023, 40(6): 3405-3416. DOI: 10.13801/j.cnki.fhclxb.20220822.003
ZHAO Yamei, CAO Tingting, ZHANG Pengyuan, et al. Photothermal self-healing and corrosion resistance of graphene oxide-shape memory epoxy resin/perfluorodecyltrimethoxysilane-polydimethylsiloxane@SiO2 superhydrophobic coatings[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3405-3416. DOI: 10.13801/j.cnki.fhclxb.20220822.003
Citation: ZHAO Yamei, CAO Tingting, ZHANG Pengyuan, et al. Photothermal self-healing and corrosion resistance of graphene oxide-shape memory epoxy resin/perfluorodecyltrimethoxysilane-polydimethylsiloxane@SiO2 superhydrophobic coatings[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3405-3416. DOI: 10.13801/j.cnki.fhclxb.20220822.003

氧化石墨烯-形状记忆环氧树脂/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@SiO2超疏水涂层的光热自修复与耐蚀性

基金项目: 国家自然科学基金(22008187);国家级大学生创新创业训练计划项目(2021107009035)The National Natural Science Fund (22008187); National College Student Innovation and Entrepreneurship Training Program Project (2021107009035)
详细信息
    通讯作者:

    赵亚梅,博士,副教授,硕士生导师,研究方向为超疏水材料 E-mail:zhaoyameihp@126.com

  • 中图分类号: O631;O69;TB332

Photothermal self-healing and corrosion resistance of graphene oxide-shape memory epoxy resin/perfluorodecyltrimethoxysilane-polydimethylsiloxane@SiO2 superhydrophobic coatings

  • 摘要: 针对物理损伤修复时间较长、修复率较低及极端条件下不锈钢易被腐蚀等实际问题,本文以具有光热效应的自修复涂层氧化石墨烯-形状记忆环氧树脂(GO-SMEP)为底层,以多级粗糙微纳米结构的超疏水涂层全氟癸基三甲氧基硅烷-聚二甲基硅氧烷@二氧化硅(PFDT-PDMS@SiO2)为表层,基于双层设计获得了一种快速修复物理损伤的光热自修复超疏水涂层GO-SMEP/PFDT-PDMS@SiO2 (GO-SMEP/PPS),并对该涂层的制备优化及其润湿性、光热效应、耐蚀性、自修复等性能进行研究。结果表明,当PDMS∶μ-SiO2∶n-SiO2质量比=1.5∶1∶1,PFDT含量为30wt%时,GO-SMEP/PPS涂层在304不锈钢基底上的超疏水性最佳,并表现出明显的镜面现象及对液滴高度排斥。GO-SMEP/PPS涂层的光热效应随着光热转化剂GO含量的增加而增强,GO含量为0.5wt%的GO-SMEP/PPS涂层经3周期的近红外光循环辐射,其光热效应保持稳定。将GO-SMEP/PPS受损涂层置于808 nm近红外光下,经3 min短时间的辐射,其物理划痕由40 μm修复至1 μm左右,基于修复前后涂层的低频阻抗模量(|Z|0.01 Hz)进一步计算其修复率高达97.5%。交流阻抗谱(EIS)分析表明,GO-SMEP/PPS(0.5wt% GO)涂层的耐蚀性由GO-SMEP底层和PPS表层共同决定,其容抗弧半径大,低频阻抗模量|Z|0.01 Hz高达3.2×105 Ω·cm2,对腐蚀性介质的阻隔性强,表现出良好的耐蚀性。在304不锈钢基底上涂覆该涂层后,所测点蚀电位(Eb=0.263 V)和维钝电流密度(Ip=4.80×10−8 A/cm2)表明对不锈钢防腐效果良好。
    Abstract:
    In this paper, based on the two-layer design, a photothermal self-healing superhydrophobic
    coating graphene oxide-shape memory epoxy resin (GO-SMEP)/perfluorodecyltrimethoxysilane-polydimethylsiloxane (PFDT-PDMS)@SiO2 (GO-SMEP/PPS) that could quickly repair physical damages was prepared. Aiming to solve the practical problems of the physical damage repair time is long, the repair rate is low, and stainless steel is susceptible to corrosion under extreme conditions for a long time. The double-layer coating was designed by combination of self-healing coating with photothermal effect GO-SMEP and the superhydrophobic coating with multi-level rough micro-nano structure PPS. Furthermore, the preparation optimization of the coating and its wettability, photothermal effect, corrosion resistance, self-healing and other properties were studied.The results show that when mass ratio of PDMS∶μ-SiO2∶n-SiO2=1.5∶1∶1 and the PFDT content is 30wt%, the superhydrophobicity of the GO-SMEP/PPS coating on the 304 stainless steel substrate is the best, and exhibits apparent specularity and high repulsion to droplets. The photothermal effect of the GO-SMEP/PPS coating is enhanced with the increase of the photothermal conversion agent GO content, and the GO-SMEP/PPS coating with a GO content of 0.5wt% is subjected to 3 cycles of near-infrared light cycling radiation, its photothermal effect remains highly stable.The damaged GO-SMEP/PPS coating was placed under 808 nm near-infrared light, and the physical scratches were repaired from 40 μm to about 1 μm after a short period of irradiation for 3 min. Based on the low-frequency impedance modulus of the coating before and after repair (|Z|0.01 Hz) further calculates the restoration rate as high as 97.5%. The AC impedance spectroscopy (EIS) analysis shows that the corrosion resistance of the GO-SMEP/PPS (0.5wt% GO) coating is jointly determined by the GO-SMEP bottom layer and the PPS surface layer, with the largest capacitive arc radius and the low-frequency impedance modulus |Z|0.01 Hz is as high as 3.2×105 Ω·cm2, which has the strongest barrier to corrosive media and shows good corrosion resistance. After applying the coating on 304 stainless steel substrate, the measured pitting corrosion potential (Eb=0.263 V) and passive current density (Ip=4.80×10−8 A/cm2) shows good corrosion resistance to stainless steel.
  • 碳化钨颗粒增强钢铁基(WCP/Fe)复合材料因兼顾金属基体的良好韧性与陶瓷增强颗粒的高强度、高硬度、高模量而广泛应用于机械制造、能源开发、交通运输等领域,但基体与增强颗粒间热物理性能差异过大使复合材料在激冷激热环境下服役时产生热应力,诱发界面处裂纹的萌生与扩展[1-4]。而将WC充分溶解,W在熔体中均匀扩散形成合金化复合层能有效解决该问题,故研究WC/Fe复合材料中W扩散均匀性十分必要[5-7]

    蜂窝结构因形状连续、比强度高等特性而对复合材料的综合性能产生重要影响[8-10]。Magotteaux公司发明X-win蜂窝结构ZTAP/Fe复合材料技术,制造的磨辊使用寿命提高两倍以上[11];WU等[12]从模拟与实验角度出发,揭示预制体孔径与孔距作为蜂窝结构重要参数对复合材料力学性能的影响;SONG等[13]成功制备蜂窝结构还原氧化石墨烯增强环氧树脂(rGH/EP)复合材料,电磁屏蔽效能与导电性明显提升。但对蜂窝预制体结构与元素扩散均匀性间的关联机制仍研究较少。

    本文采用真空消失模铸渗(V-EPC)工艺制备WC/Fe复合材料[14-15],选取孔径孔距比相同孔径不同的蜂窝预制体,并将W质量分数最高与最低的预制体原孔壁与原孔心处W质量分数作为W扩散均匀性的判断条件[16-17]。表征复合层的显微组织、物相组成、元素分布,并检测预制体原孔壁与原孔心处W质量分数、硬度及复合层耐磨性,揭示其孔径对W质量分数分布的影响规律。通过求解非稳态扩散方程得解析解,对预制体孔内熔体凝固时的热物理场进行有限元模拟,并通过二次开发程序对其原孔内W质量分数分布进行数值模拟,揭示其孔径对W扩散均匀性的影响机制;提出W扩散均匀性与复合层耐磨性间的关联机制,为工程应用提供理论依据。

    为避免铸渗时W粉因粒径过小而大量烧损,选取铸造WC颗粒(WC/W2CP)为合金化提供W;表1为WC/Fe复合材料中预制体的成分组成,配置预制体粉末300 g,与5wt%水玻璃粘结剂均匀混合;表2为WC/Fe复合材料中预制体的结构参数,填充到预制体孔径孔距比相同孔径不同的蜂窝模具内,其轮廓为50 mm×100 mm×6 mm;采用CO2硬化与微波烧结方法,得最终预制体。

    表3为WC/Fe复合材料中基体的成分组成。配置基体并采用中频感应炉熔炼20 kg。图1为WC/Fe复合材料的制备过程,采用V-EPC工艺成型,浇注温度为1 500℃,型腔负压为0.05 MPa。

    表  1  WC/Fe复合材料中预制体的成分
    Table  1.  Composition of preform in WC/Fe composites
    CompositionMass fraction/wt%Size/μm
    WC 40 150-200
    Ni60 30 60-90
    FeCr55C6.0 30 150-200
    下载: 导出CSV 
    | 显示表格
    表  2  WC/Fe复合材料中预制体的结构参数
    Table  2.  Structure parameters of preform in WC/Fe composites
    Diameter R/mmDistance d/mmNumber n
    3 6 63
    6 12 16
    9 18 7
    下载: 导出CSV 
    | 显示表格
    表  3  WC/Fe复合材料中基体的成分
    Table  3.  Composition of matrix in WC/Fe composites
    CompositionCCrMnSiFe
    Mass fraction/wt% 1.2-1.3 18.0-20.0 0.4-0.6 1.0-1.2 Balance
    下载: 导出CSV 
    | 显示表格
    图  1  WC/Fe复合材料的制备过程
    Figure  1.  Preparation process of WC/Fe composites ((a)V-EPC (Vacuum-expendable pattern casting); (b)Honeycomb preform; (c)Transformation between preform and layer)

    采用尼康MA200型OM表征复合层显微组织,并统计预制体原孔壁与原孔心处平均晶粒尺寸分布。采用岛津7000S/L型XRD、牛津仪器Ultim Extreme型EDS面扫描表征复合层物相组成、元素分布。采用牛津仪器Ultim Extreme型EDS点扫描、上海光学仪器厂HX1000型显微硬度计表征复合层预制体原孔壁与原孔心处元素质量分数、硬度。采用广州试验仪器厂MS-5E型三体磨料磨损机表征复合层耐磨性,载荷为2 kg、转速为40 r/min、预磨时间为30 min、磨粒粒径为200~550 μm,并采用蔡司EVO18型SEM表征预制体原孔心处磨损形貌。采用COMSOL Multiphysics 5.4有限元模拟预制体孔内熔体凝固时的热物理场。采用MATLAB R2015b通过二次开发程序数值模拟预制体原孔内W质量分数分布。

    图2为不同预制体孔径下WC/Fe复合材料复合层的显微组织。熔体填充预制体孔洞,WC高温下分解,W由其孔壁扩散至孔心处,形成复合层。图3为不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布,随预制体孔径增加,其原孔壁处晶粒尺寸基本不变,而在其原孔心处先减小后增大。

    图  3  不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布
    Figure  3.  Average grain size distribution into initial hole of layer in WC/Fe composites with different hole diameters of preform

    图4为不同预制体孔径下WC/Fe复合材料复合层原孔内的平均晶粒尺寸分布。表明复合层中均形成W2C、WC、Ni17W3、Fe3W3C、(Fe,Cr)3C。根据W-C相图,WC/W2CP中WC分解形成W2C、C,而C扩散到熔体中使(Fe,Cr)3C增多;根据Fe-W-C相图,熔体与W2C发生包晶反应形成Fe3W3C;WC、Ni60分解使W、Ni质量分数增加,形成镍钨化合物Ni17W3

    图  2  不同预制体孔径下WC/Fe复合材料复合层的显微组织
    Figure  2.  Microstructure of layer in WC/Fe composites with different hole diameters of preform
    图  4  不同预制体孔径下WC/Fe复合材料复合层的物相组成
    Figure  4.  Phase composition of layer in WC/Fe composites with different hole diameters of preform

    根据Fe-Cr-C相图[18-19],推测熔体(Cr:18.0wt%~20.0wt%,C:1.2wt%~1.3wt%)为典型亚共晶成分合金(Cr:11.0wt%~30.0wt%,C:<2.8wt%),凝固时先析出一次奥氏体枝晶,待温度降至共晶点发生共晶转变形成共晶奥氏体与二次碳化物的混合共晶组织,而复合层为网状形貌的M3C型碳化物[7,20]图5为不同预制体孔径下WC/Fe复合材料复合层的元素分布。Cr分布在共晶奥氏体与二次碳化物中,W、Ni弥散分布在一次奥氏体枝晶内。

    图  5  不同预制体孔径下WC/Fe复合材料复合层的元素分布
    Figure  5.  Element distribution of layer in WC/Fe composites with different hole diameters of preform

    图6为不同预制体孔径下WC/Fe复合材料复合层原孔内的W质量分数分布。其原孔壁处W质量分数较高,而在其原孔心处较低。与晶粒尺寸的变化相反,随预制体孔径增加,其原孔壁处W质量分数基本不变,而在其原孔心处先增大后减小。为进一步表征W扩散均匀性,通过计算得不同预制体孔径下W扩散均匀性分别为84.1%、88.7%、86.9%,表明W扩散均匀性随其孔径增加而先增大后减小,W扩散均匀性的表达式为

    图  6  不同预制体孔径下WC/Fe复合材料复合层原孔内的W质量分数分布
    Figure  6.  W mass fraction distribution into initial hole of layer in WC/Fe composites with different hole diameters of preform
    δ=123πR2C(0,tmax (1)

    式中:δ为W扩散均匀性;C(0,tmax)、C(R/2,tmax)分别为预制体原孔壁、原孔心处W质量分数。

    图7为不同预制体孔径下WC/Fe复合材料复合层原孔内的硬度分布。其原孔壁处硬度较高,而在其原孔心处较低。与W质量分数的变化相同,随预制体孔径增加,其原孔壁处硬度基本不变,而在其原孔心处先增大后减小。图8为不同预制体孔径下WC/Fe复合材料复合层原孔心处的磨损形貌。R=3 mm时其原孔心处犁沟最明显,R=9 mm时次之,R=6 mm时最不明显。图9为不同预制体孔径下WC/Fe复合材料复合层的磨损量。表明复合层耐磨性随其孔径增加而先增大后减小。

    图  7  不同预制体孔径下WC/Fe复合材料复合层原孔内的硬度分布
    Figure  7.  Hardness distribution into initial hole of layer in WC/Fe composites with different hole diameters of preform
    图  8  不同预制体孔径下WC/Fe复合材料复合层原孔心处的磨损形貌
    Figure  8.  Wear morphologies at initial hole center of layer in WC/Fe composites with different hole diameters of preform
    图  9  不同预制体孔径下WC/Fe复合材料复合层的磨损量
    Figure  9.  Wear amount of layer in WC/Fe composites with different hole diameters of preform

    为进一步探究影响W扩散均匀性的因素,对预制体原孔内W质量分数分布进行数值模拟。将W扩散区看作受固液界面移动驱动的半无限大物体,且扩散时间近似为预制体孔内熔体凝固时间[21-22]。下式为W扩散区边界条件的表达式:

    \left\{ \begin{array}{l} C\left( {x,t} \right) = {C_{{\rm{SL}}}},x = x\left( t \right) \\ C\left( {x,t} \right) = {C_{{\rm{LS}}}},x < x\left( t \right) \end{array}\right. (2)

    式中,CSLCLS分别为固液界面固、液相侧W质量分数。根据Arrhenius方程,W质量分数分布为

    \left\{ \begin{array}{l} C\left( {x,t} \right) = \dfrac{{{C_{{\rm{SL}}}}}}{{{\rm{erf}}\left( k \right) - 1}}\left( {{\rm{erf}}\left( {\dfrac{x}{{2\sqrt {Dt} }}} \right) + 1} \right) \\ D = {D_0}{\rm{exp}}\left( { - \dfrac{{{E_{\rm{A}}}}}{{{k_{\rm{B}}}T}}} \right) \end{array} \right. (3)

    式中:x为W扩散距离;t为W扩散时间;T为W扩散温度;D为W扩散系数;k为常数;EA为W元素扩散激活能;kB为玻尔兹曼常数[22]。W扩散总时间为

    {t_{{\rm{max}}}} = \frac{{{R^2}}}{{64{k^2}D}} (4)

    通过解析解得W扩散过程同时受温度与固液界面移动影响。故先采用有限元模拟软件COMSOL Multiphysics 5.4模拟预制体孔内熔体凝固时的温度场与相场,表4为预制体孔内熔体凝固时热物理场模拟的参数设置。图10为预制体孔内熔体凝固时热物理场的有限元模拟。发现固液界面明显存在,且其左侧温度较高,熔体为液相,而其右侧温度较低,熔体为固相,即其孔壁处熔体先凝固,且固液界面移动驱动W扩散。此外,随预制体孔径增加,其孔内熔体高温区增多,使其平均温度增高,W扩散系数受W扩散温度影响,扩散温度越高扩散系数越大,其原孔内W质量分数分布曲线斜率绝对值越大;图11为不同预制体孔径下WC/Fe复合材料复合层原孔内W质量分数分布的数值模拟。再将该有限元模拟结果代入数学分析软件MATLAB R2015b的二次开发程序中进行数值模拟,最终得其原孔内W质量分数分布曲线,发现其原孔内W质量分数为W扩散距离的单调递减函数。因预制体孔径孔距比相同且W扩散区为受固液界面移动驱动的半无限大物体,故设置W初始质量分数相同。随预制体孔径增加,其原孔内W质量分数分布曲线斜率绝对值增大,故R=3 mm时其原孔心处W质量分数较R=6 mm时低,但R=6 mm时W扩散距离较R=9 mm时短,故其原孔心处W质量分数R=6 mm时最高,R=9 mm时次之,R=3 mm时最低,即该数值模拟与实验结果相符。

    表  4  预制体孔内熔体凝固时热物理场模拟的参数设置
    Table  4.  Parameters setting of thermal physical field simulation when internal matrix of preform solidifies
    PhaseDensity/(kg·m−3)Thermal conductivity/(W·m−1·K−1)Heat capacity/(J·kg−1·K−1)
    Fe(s) 8 500 200 400
    Fe(l) 7 800 450 550
    Inlet temperature/°C Melting temperature/°C Temperature transition half width/K Surface emissivity
    1 500 1 100 50 0.8
    Specific heat/(J·kg−1·K−1) Solidification latent heat/(kJ·kg−1) Heat transfer coefficient/(W·m−2·K−1)
    60 200 800
    下载: 导出CSV 
    | 显示表格
    图  10  不同预制体孔径下孔内熔体凝固时热物理场的有限元模拟
    Figure  10.  Finite element simulation of thermal physical field when internal matrix solidifies with different hole diameters of preform
    图  11  不同预制体孔径下WC/Fe复合材料复合层原孔内W质量分数分布的数值模拟
    Figure  11.  Numerical simulation of W mass fraction distribution in initial hole in WC/Fe composites with different hole diameters of preform

    预制体孔径较大时,其孔内熔体较多,温度也较高。一方面扩散时间较长,有利于W扩散;另一方面扩散距离较长,不利于W扩散均匀,使预制体原孔心处W质量分数降低。同理,预制体孔径较小时,扩散距离虽短,但扩散时间较短,使W扩散不充分,其原孔心处W质量分数较低,故W扩散均匀性也较低;故预制体孔径适中时,因兼顾扩散距离与扩散时间而使W扩散均匀性最高。综上所述,W扩散过程同时受扩散距离与扩散时间的影响。

    亚共晶Fe-Cr-C系合金中含大量低硬度、高韧性的一次奥氏体,硬度、耐磨性较低,而W弥散分布在一次奥氏体枝晶内形成M6C型碳化物Fe3W3C,细化晶粒使复合层冲击韧性未明显降低,且引入硬质相使其硬度明显提高[20,23],一定范围内也提高其耐磨性[24]。W扩散均匀性越高,预制体原孔心处W质量分数越高,形成硬质相越多,硬度也越高,最终提高复合层耐磨性。

    采用真空消失模铸渗(V-EPC)工艺制备WC/Fe复合材料,选取预制体孔径孔距比相同孔径不同的蜂窝预制体,并将其原孔壁与原孔心处W质量分数作为W扩散均匀性的判断条件,得如下结论。

    (1) WC高温下分解,W由预制体孔壁至孔心处扩散,形成弥散分布的硬质相Fe3W3C。

    (2)预制体原孔壁与原孔心处W质量分数与硬度相差随孔径增加而先增大后减小,复合层耐磨性的变化亦然。

    (3) W扩散均匀性同时受扩散距离与扩散时间的影响。预制体孔径较小时,扩散距离虽短,但扩散时间较短,不利于W扩散;预制体孔径较大时,扩散时间虽长,但扩散距离增长,仍不利于W扩散;预制体孔径适中时,因兼顾扩散距离与扩散时间,利于W扩散。

    (4)耐磨性与W扩散均匀性间存在关联,W扩散均匀性越高,预制体原孔心处W质量分数越高,形成硬质相越多,硬度也越高,一定范围内复合层耐磨性也越高。

  • 图  1   氧化石墨烯-形状记忆环氧树脂(GO-SMEP)/全氟癸基三甲氧基硅烷-聚二甲基硅氧烷(PFDT-PDMS)@SiO2 (PPS)涂层的制备过程示意图

    Figure  1.   Schematic diagram of the preparation process of graphene oxide-shape memory epoxy resin (GO-SMEP)/perfluorodecyltrimethoxysilane-polydimethylsiloxane (PFDT-PDMS)@SiO2 (PPS) coating

    DGEBA—Bisphenol A diglycidyl ether; D-230—Polyetheramine D-230; DMF—Dimethylformamide

    图  2   PDMS (a)、PFDT (b) 含量对PPS涂层水接触角(CA)和滚动角(SA)的影响

    Figure  2.   PDMS (a), PFDT (b) content on water contact angle (CA) and sliding angle (SA) of PPS coating

    图  3   (a) SMEP、GO、GO-SMEP和GO-SMEP/PPS的FTIR图谱;(b) SMEP、GO、GO-SMEP和GO-SMEP/PPS的XPS图谱;((c)~(e)) SMEP、GO、GO-SMEP的C1s图谱

    Figure  3.   (a) FTIR spectra of SMEP, GO, GO-SMEP and GO-SMEP/PPS; (b) XPS spectra of SMEP, GO, GO-SMEP and GO-SMEP/PPS; ((c)-(e)) C1s spectra of SMEP, GO, GO-SMEP

    图  4   GO-SMEP和GO-SMEP/PPS样品:((a), (b)) 在近红外光(NIR)照射下的温度变化;((c), (d)) 循环辐照曲线(0.5wt%GO)

    Figure  4.   GO-SMEP and GO-SMEP/PPS samples: ((a), (b)) Temperature changes of the samples under near infrared (NIR) irradiation; ((c), (d)) Cyclic irradiation curves (0.5wt%GO)

    图  5   GO-SMEP (a)、PPS (b)、GO-SMEP/PPS (c) 的SEM图像;水滴滴于GO-SMEP (d)、PPS (f)、GO-SMEP/PPS (h) 涂层表面的照片;GO-SMEP (e)、PPS (g)、GO-SMEP/PPS (i) 浸泡在去离子水中的照片;GO-SMEP (j)、PPS (l)、GO-SMEP/PPS (n) 的水接触角;水流射在GO-SMEP (k)、PPS (m)、GO-SMEP/PPS (o) 涂层表面的光学照片

    Figure  5.   SEM images of GO-SMEP (a), PPS (b), GO-SMEP/PPS (c); Photographs of the GO-SMEP (d), PPS (f), GO-SMEP/PPS (h) coatings with water droplet; Photographs of GO-SMEP (e), PPS (g), GO-SMEP/PPS (i) soaked in deionized in water; Water contact angles of GO-SMEP (j), PPS (l), GO-SMEP/PPS (n) coating; Optical photograph of the surface of GO-SMEP (k), PPS (m), GO-SMEP/PPS (o) coatings with blue drops

    图  6   不同涂层的Nyquist图 (a)、阻抗模量曲线 (b)、相位角曲线 (c) 和GO-SMEP/PPS涂层的阻抗模量曲线 (d)

    Figure  6.   Nyquist plot (a), impedance modulus curves (b), phase angle (c) and impedance modulus curves (d) of GO-SMEP/PPS coating

    Z', Z"—Nyquist diagram represent the real and imaginary parts of the impedance

    图  8   不同GO含量的GO-SMEP/PPS涂层近红外光辐射前后的阻抗模量曲线 ((a)~(d)) 和相位角图 ((e)~(h))

    Figure  8.   Impedance modulus ((a)-(d)) and phase angle ((e)-(h)) of GO-SMEP/PPS coatings with different contents of GO before and after near-infrared irradiation

    图  7   不同涂层的动电位极化曲线

    Figure  7.   Polarization curves of different coatings

    i—Current

    图  9   GO-SMEP/PPS(0.5wt%GO)涂层在近红外光下辐射3 min修复前后的表面形貌:(a) 修复前;(b) 修复后;在近红外光下辐射不同时间对应的红外热成像图片:(c) 0 min;(d) 1 min;(e) 2 min;(f) 3 min

    Figure  9.   Surface morphologies of GO-SMEP/PPS (0.5wt%GO) coatings before and after healing under near-infrared light for 3 min: (a) Before repair; (b) After repair; Corresponding to different time of irradiation under near-infrared light infrared thermal imaging: (c) 0 min; (d) 1 min; (e) 2 min; (f) 3 min

    表  1   裸不锈钢、涂覆PPS、SMEP、GO-SMEP及GO-SMEP/PPS涂层的不锈钢基底防腐评价相关参数

    Table  1   Corrosion-resistant evaluation parameters of bare stainless steel, stainless steel substrate coated with PPS, SMEP, GO-SMEP and GO-SMEP/PPS coating

    CoatingEcorr/VIcorr/AEb/VIp/A
    304 stainless steel−0.7416.21×10−5−0.01378.19×10−5
    PPS−0.4391.42×10−5−0.01031.47×10−5
    SMEP−0.3561.922×10−6−0.07003.01×10−7
    GO-SMEP−0.2408.582×10−70.18002.40×10−7
    GO-SMEP/PPS−0.1062.612×10−80.26304.80×10−8
    Notes: Ecorr—Self-corrosion potential; Icorr—Self-corrosion current density; Eb—Pitting potential; Ip—Passive current density.
    下载: 导出CSV

    表  2   修复前后GO-SMEP/PPS涂层的接触角及滚动角

    Table  2   Contact angle and rolling angle of GO-SMEP/PPS coatings before and after healing

    CA/(°)SA/(°)
    0.1wt%GO0.5wt%GO1.0wt%GO2.0wt%GO0.1wt%GO0.5wt%GO1.0wt%GO2.0wt%GO
    Original154.3°154.6°154.8°154.9°5.3°4.9°4.6°4.3°
    Scratched147.0°145.4°146.4°146.0°16.6°17.8°16.1°17.0°
    Healed152.8°153.6°152.9°152.4°6.2°5.2°5.5°6.5°
    下载: 导出CSV
  • [1]

    LINA E, LOUISE O, IRENE R M. The effect of superhydrophobic wetting state on corrosion protection the-AKDexample[J]. Journal of Colloid and Interface Science,2013,412:56-64. DOI: 10.1016/j.jcis.2013.09.006

    [2]

    TAMMY L M, ROBERT L P, EDWARD T K. Passivation of metal alloys using sol-gel-derived materials—A review[J]. Progress in Organic Coatings,2001,41:233-238. DOI: 10.1016/S0300-9440(01)00134-5

    [3]

    ZHANG X F, JIANG F, CHEN R J, et al. Robust superhydrophobic coatings prepared by cathodic electrophoresis of hydrophobic silica nanoparticles with the cationic resin as the adhesive for corrosion protection[J]. Corrosion Science,2020,173:108797. DOI: 10.1016/j.corsci.2020.108797

    [4]

    YANG X N, TIAN L M, WANG W, et al. Bio-inspired superhydrophobic self-healing surfaces with synergistic anticorrosion performance[J]. Journal of Bionic Engineering,2020,17(6):1196-1208. DOI: 10.1007/s42235-020-0094-4

    [5]

    ZHAO X, WEI J F, LI B C, et al. A self-healing superamphiphobic coating for efficient corrosion protection of magnesium alloy[J]. Journal of Colloid and Interface Science,2020,575:140-149. DOI: 10.1016/j.jcis.2020.04.097

    [6]

    WANG L T, DENG L P, ZHANG D W, et al. Shape memory composite (SMC) self-healing coatings for corrosion protection[J]. Progress in Organic Coatings,2016,97:261-268. DOI: 10.1016/j.porgcoat.2016.04.041

    [7]

    XU Y R, CHEN D J. Shape memory-assisted self-healing polyurethane inspired by a suture technique[J]. Journal of Materials Science,2018,53(14):10582-10592. DOI: 10.1007/s10853-018-2346-9

    [8]

    QIAN H C, XU D K, DU C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A,2017,5(5):2355-2364. DOI: 10.1039/C6TA10903A

    [9]

    HUANG Y, DENG L, JU P, et al. Triple-action self-healing protective coatings based on shape memory polymers containing dual-function microspheres[J]. ACS Applied Materials & Interfaces,2018,10(27):23369-23379.

    [10]

    ZHANG J J, WEI J F, LI B C, et al. Long-term corrosion protection for magnesium alloy by two-layer self-healing superamphiphobic coatings based on shape memory polymers and attapulgite[J]. Journal of Colloid and Interface Science,2021,594:836-847. DOI: 10.1016/j.jcis.2021.03.005

    [11] 赵亚梅, 曹婷婷, 丁思奇, 等. SMEP/PDMS@ZnO@SiO2自修复超疏水涂层的制备及防腐性能[J]. 复合材料学报, 2022, 39(12): 5949-5957.

    ZHAO Yamei, CAO Tingting, DING Siqi, et al. Self-healing superhydrophobic SMEP-PZS coating and its anticorrosion performance[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5949-5957(in Chinese).

    [12]

    WANG T, WANG W, FENG H M, et al. Photothermal nanofiller-based polydimethylsiloxane anticorrosion coating with multiple cyclic self-healing and long-term self-healing performance[J]. Chemical Engineering Journal,2022,446:137077. DOI: 10.1016/j.cej.2022.137077

    [13]

    CHEN J M, FANG L, XU Z Z, et al. Self-healing epoxy coatings curing with varied ratios of diamine and monoamine triggered via near-infrared light[J]. Progress in Organic Coatings,2016,101:543-552. DOI: 10.1016/j.porgcoat.2016.09.020

    [14]

    HUANG L, LI J, YUAN W, et al. Near-infrared light controlled fast self-healing protective coating on magnesium alloy[J]. Corrosion Science,2020,14:163-173.

    [15]

    POURHASHEM S, VAEZI M R, RASHIDI A, et al. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel[J]. Corrosion Science,2017,115:78-92. DOI: 10.1016/j.corsci.2016.11.008

    [16]

    YANG S W, DU X S, DU Z L, et al. Robust, stretchable and photothermal self-healing polyurethane elastomer based on furan-modified polydopamine nanoparticles[J]. Polymer,2020,190:122219-122233. DOI: 10.1016/j.polymer.2020.122219

    [17]

    DONG Y H, GENG C D, LIU C M, et al. Near-infrared light photothermally induced shape memory and self-healing effects of epoxy resin coating with polyaniline nanofibers[J]. Synthetic Metals,2020,266:116417. DOI: 10.1016/j.synthmet.2020.116417

    [18]

    PENG P, ZHANG B Y, CAO Z X, et al. Photothermally induced scratch healing effects of thermoplastic nanocomposites with gold nanoparticles[J]. Composites Science and Technology,2016,33:165-172.

    [19]

    ZHANG L X, JIAO H Q, JIU H F, et al. Thermal, mechanical and electrical properties of polyurethane/(3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites[J]. Composites Part A: Applied Science and Manufacturing,2016,90:286-295. DOI: 10.1016/j.compositesa.2016.07.017

    [20]

    HA Y M, KIM Y O, KIM Y N, et al. Rapidly self-heating shape memory polyurethane nanocomposite with boron-doped single-walled carbon nanotubes using near-infrared laser[J]. Composites Part B: Engineering,2019,175:107065-107072. DOI: 10.1016/j.compositesb.2019.107065

    [21]

    YU Z W, WANG Z Q, LI H. Shape memory epoxy polymer (SMEP) composite mechanical properties enhanced by introducing graphene oxide (GO) into the matrix[J]. Materials (Basel),2019,12(7):1107-1117. DOI: 10.3390/ma12071107

    [22]

    GAO Y Y, ZHANG Y L, HAN B, et al. Gradient assembly of polymer nanospheres and graphene oxide sheets for dual-responsive soft actuators[J]. ACS Applied Materials & Interfaces,2019,11(40):37130-37138.

    [23]

    WANG Z H, YUAN L, LIANG G Z, et al. Mechanically durable and self-healing super-hydrophobic coating with hierarchically structured KH570 modified SiO2-decorated aligned carbon nanotube bundles[J]. Chemical Engineering Journal,2021,408:127263-127278. DOI: 10.1016/j.cej.2020.127263

  • 期刊类型引用(0)

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  1299
  • HTML全文浏览量:  674
  • PDF下载量:  79
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-06-07
  • 修回日期:  2022-08-07
  • 录用日期:  2022-08-07
  • 网络出版日期:  2022-08-22
  • 刊出日期:  2023-06-14

目录

/

返回文章
返回