FRP约束型钢混凝土柱-钢筋混凝土环梁节点震后轴压性能评估

Evaluation of axial compressive performance of FRP-confined steel-reinforced concrete column-to-reinforced concrete ring beam joint with seismic damage

  • 摘要: 对2个具有不同环梁配筋率的纤维增强树脂复合材料(FRP)约束型钢混凝土(FCSRC)柱-钢筋混凝土(RC)梁节点震损试件进行轴压试验,结合有限元模拟和理论分析,对震损试件的轴压性能进行分析和评估。结果表明:震损试件在轴压荷载下的破坏均由玻璃纤维增强树脂复合材料(Glass fiber reinforced polymer,GFRP)管破裂引起,表明所设计的两个试件在震损后依然满足“强节点,弱构件”的设计原则;当环梁配筋率由1.4%增大到2.5%时,试件的屈服荷载和初始刚度变化不大,而峰值荷载和屈服后刚度分别增加了7.3%和60.2%,极限变形和延性系数分别减小了10.4%和8.5%;所建立的有限元模型可以较好地模拟震损试件的轴压行为;所提出的理论计算公式能够较准确地预测震损试件的轴压承载力,同时具有一定的安全储备。

     

    Abstract: Axial compressive tests were conducted on two fiber reinforced polymer (FRP)-confined steel-reinforced concrete (FCSRC) column-to-reinforced concrete (RC) beam joints with seismic damage which have different reinforcement ratios of the ring beam. The axial compressive performance of the specimen with seismic damage was analyzed and evaluated by finite element simulation and theoretical analysis. The results show that the failure of the specimens is caused by the rupture of the glass fiber reinforced polymer (GFRP) tubes, indicating that the designed specimens still meet the design principle of strong joint and weak members after seismic. When the ring beam reinforcement ratio is increased from 1.4% to 2.5%, the yield load and initial stiffness of the specimen do not change much, while the peak load and post-yield stiffness increase by 7.3% and 60.2%, respectively, and the ultimate deformation and ductility factor decrease by 10.4% and 8.5%, respectively. The established finite element model can better reflect the axial compressive behavior of the specimens with seismic damage. The proposed theoretical formulation could predict the axial compressive bearing capacity of the specimen with seismic damage accurately with certain safety reserves.

     

/

返回文章
返回