Loading [MathJax]/jax/output/SVG/jax.js

熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能

叶喜葱, 高琦, 何恩义, 杨超, 欧阳宾, 杨鹏, 吴海华

叶喜葱, 高琦, 何恩义, 等. 熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能[J]. 复合材料学报, 2023, 40(5): 2759-2771. DOI: 10.13801/j.cnki.fhclxb.20220727.002
引用本文: 叶喜葱, 高琦, 何恩义, 等. 熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能[J]. 复合材料学报, 2023, 40(5): 2759-2771. DOI: 10.13801/j.cnki.fhclxb.20220727.002
YE Xicong, GAO Qi, HE Enyi, et al. Mechanical and microwave absorbing properties of Mn-Zn ferrite/polylactic acid composites formed by fused deposition modeling[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2759-2771. DOI: 10.13801/j.cnki.fhclxb.20220727.002
Citation: YE Xicong, GAO Qi, HE Enyi, et al. Mechanical and microwave absorbing properties of Mn-Zn ferrite/polylactic acid composites formed by fused deposition modeling[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2759-2771. DOI: 10.13801/j.cnki.fhclxb.20220727.002

熔融沉积成形锰锌铁氧体/聚乳酸复合材料的力学和吸波性能

基金项目: 国家自然科学基金(51575313);三峡大学石墨增材制造技术与装备湖北省工程研究中心(HRCGAM202101)
详细信息
    通讯作者:

    何恩义,博士,讲师,硕士生导师,研究方向为吸波材料与器件 E-mail:heenyi@ctgu.edu.cn

  • 中图分类号: TB333

Mechanical and microwave absorbing properties of Mn-Zn ferrite/polylactic acid composites formed by fused deposition modeling

Funds: National Natural Science Foundation of China (51575313); Hubei Engineering Research Center of Graphite Additive Manufacturing Technology and Equipment of China Three Gorges University (HRCGAM202101)
  • 摘要: 3D打印技术在快速制造复杂形状零件方面获得了越来越多的关注。将锰锌铁氧体(MZF)作为增强体填充到聚乳酸(PLA)中,通过球磨混合和熔融挤出法制备出MZF/PLA复合线材,利用熔融沉积成形(FDM)制备出MZF/PLA复合材料。采用XRD、 SEM和矢量网络分析仪对不同复合比例的MZF/PLA复合材料的微观形貌、力学性能和电磁性能进行表征,并计算不同厚度的反射损耗,研究MZF的含量对复合材料吸波性能的影响。结果表明:当MZF含量为10wt%时,MZF/PLA复合材料的拉伸强度相比纯PLA提升了17.6%,随着MZF含量的提升,复合材料的吸波性能随之增强。当MZF的含量达到50wt%,在12.7 GHz处,厚度为7.4 mm时反射率达到最小值−55.3 dB,在厚度为7.9 mm时,有效吸波频带宽为4.5 GHz。因此,基于FDM制备的3D打印MZF/PLA复合材料具有良好的吸波性能和承载能力,是一种非常有前途的3D打印微波吸收材料。
    Abstract: 3D printing technology has received more and more attention in the rapid manufacturing of complex shape parts. Mn-Zn ferrite (MZF) was filled into polylactic acid (PLA) as reinforcement, the MZF/PLA composite wire was prepared by ball milling mixing and melt extrusion, and the MZF/PLA composites was prepared by fused deposition modeling (FDM). The micro morphology, mechanical properties and electromagnetic properties of MZF/PLA composites with different composite ratios were characterized by XRD, SEM and vector network analyzer, and the reflection loss of different thickness was calculated to study the effect of MZF content on the microwave absorption properties of the composites. The results show that when the MZF content is 10wt%, the tensile strength of MZF/PLA composite is 17.6% higher than that of pure PLA. With the increase of MZF content, the microwave absorption performance of the composite enhanced. When the content of MZF reaches 50wt% at 12.7 GHz, when the thickness is 7.4 mm, the reflectivity reaches the minimum value of −55.3 dB, and when the thickness is 7.9 mm, the effective microwave absorption band width is 4.5 GHz. Therefore, the 3D printed MZF/PLA composite prepared based on FDM has good microwave absorbing properties and bearing capacity, and it is a very promising microwave absorbing material for 3D printing.
  • 图  1   锰锌铁氧体(MZF)粉末的形貌

    Figure  1.   Morphology of Mn-Zn ferrite (MZF) powders

    图  2   MZF粉末的粒径分布(a)和磁滞回线(b)

    Dv(50)—Particle size at 50% volume fraction; Ms—Saturation magnetization; Hc—Coercivity; Mr—Residual magnetization

    Figure  2.   Particle size distribution (a) and hysteresis loop (b) of MZF powders

    图  3   MZF/PLA复合粉末的DSC曲线

    Figure  3.   DSC thermograms of MZF/PLA composite powders

    图  4   (a) MZF/PLA 复合线材;(b)同轴环;(c)拉伸试样

    Figure  4.   (a) MZF/PLA composite filaments; (b) Coaxial rings; (c) Tensile specimen

    图  5   不同MZF含量的MZF/PLA复合材料的XRD图谱

    Figure  5.   XRD patterns of MZF/PLA composite materials with different MZF contents

    图  6   MZF/PLA复合材料的TG曲线

    Figure  6.   TG curves of MZF/PLA composites

    图  7   MZF/PLA复合材料的应力-应变曲线

    Figure  7.   Stress-strain curves of MZF/PLA composites

    图  8   不同MZF含量的MZF/PLA复合材料的SEM图像

    Figure  8.   SEM images of MZF/PLA composites with different MZF contents

    图  9   不同MZF含量同轴环的电磁参数:在2~18 GHz频率范围内复介电常数的实部(a)和虚部(b);复磁导率的实部(c)和虚部(d);介电损耗角正切(e)和磁损耗角正切(f)

    Figure  9.   Electromagnetic parameters of coaxial rings with different MZF contents: Real (a) and imaginary (b) part of the complex permittivity; Real (c) and imaginary (d) part of the complex permeability; Tangent dielectric loss (e) and tangent magnetic loss (f) in the frequency range of 2-18 GHz

    图  10   MZF/PLA复合材料的涡流值C0

    Figure  10.   Eddy current data C0 of MZF/PLA composites

    11   10%MZF/PLA (a)、20%MZF/PLA (b)、30%MZF/PLA (c)、40%MZF/PLA (d)和50%MZF/PLA (e)的反射损耗三维图和吸波曲线

    RLmin—Minimum reflection loss; EAB—Effective absorption bandwidth

    11.   3D maps of reflection loss and microwave absorption curves of 10%MZF/PLA (a), 20%MZF/PLA (b), 30%MZF/PLA (c), 40%MZF/PLA (d) and 50%MZF/PLA (e)

    图  12   (a) MZF/PLA复合材料的衰减系数;(b) 复合材料厚度为7.4 mm时的阻抗匹配特性

    d—Thickness

    Figure  12.   (a) Attenuation constants of MZF/PLA composites; (b) Impedance matching characteristics for the composites with the thickness of 7.4 mm

    图  13   微波吸收机制示意图

    Figure  13.   Schematic diagram of microwave absorption mechanism

    表  1   MZF/聚乳酸(PLA)复合材料的组分

    Table  1   Component of MZF/polylactic acid (PLA) composites

    Sample numberMass fraction/wt%
    PLAMZF
    Pure PLA1000
    10%MZF/PLA9010
    20%MZF/PLA8020
    30%MZF/PLA7030
    40%MZF/PLA6040
    50%MZF/PLA5050
    下载: 导出CSV

    表  2   MZF/PLA复合粉末DSC曲线对应的数据

    Table  2   DSC data of MZF/PLA composite powders

    Sample numberTm/℃Tc/℃Tg/℃
    Pure PLA114.0797.7180.81
    10%MZF/PLA110.8597.7181.17
    20%MZF/PLA112.1797.9881.89
    30%MZF/PLA110.8697.8881.62
    40%MZF/PLA111.1297.7181.35
    50%MZF/PLA111.1198.5281.89
    Notes: Tm—Melting temperature; Tc—Crystallization temperature; Tg—Glass transition temperature.
    下载: 导出CSV

    表  3   不同MZF含量的MZF/PLA复合材料的拉伸强度和断裂延伸率

    Table  3   Tensile strength and elongation at break of MZF/PLA composites with different MZF contents

    Sample
    number
    Tensile strength/MPaElongation at break/%
    Pure PLA 34.40 26.12
    10%MZF/PLA 40.40 21.76
    20%MZF/PLA 35.60 20.56
    30%MZF/PLA 25.42 15.28
    40%MZF/PLA 16.07 8.93
    50%MZF/PLA 14.22 6.68
    下载: 导出CSV
  • [1]

    CHENG Y, ZHU W D, LU X F, et al. Recent progress of electrospun nanofibrous materials for electromagnetic interference shielding[J]. Composites Communications,2021,27:100823. DOI: 10.1016/j.coco.2021.100823

    [2]

    ZONG M, HUANG Y, ZHAO Y S, et al. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites[J]. RSC Advances,2013,3(45):23638-23648. DOI: 10.1039/c3ra43359e

    [3]

    JOP C T, JOS A A M V D. Impact of high electromagnetic field levels on childhood leukemia incidence[J]. International Journal of Cancer,2012,131(4):769-778. DOI: 10.1002/ijc.27542

    [4]

    YAO L H, CAO W Q, ZHAO J G, et al. Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage[J]. Journal of Materials Science & Technology,2022,127:48-60.

    [5]

    LIU T T, CAO M Q, FANG Y S, et al. Green building materials lit up by electromagnetic absorption function: A review[J]. Journal of Materials Science & Technology,2022,112:329-344.

    [6]

    ZHU J L, WANG X G, WANG X J, et al. Carbonyl iron powder/ethyl cellulose hybrid wall microcapsules encapsulating epoxy resin for wave absorption and self-healing[J]. Composites Science and Technology,2021,214:108960. DOI: 10.1016/j.compscitech.2021.108960

    [7]

    ZHANG N, HAN M Y, WANG G H, et al. Achieving broad absorption bandwidth of the Co/carbon absorbers through the high-frequency structure simulator electromagnetic simulation[J]. Journal of Alloys and Compounds,2021,883:160918. DOI: 10.1016/j.jallcom.2021.160918

    [8]

    HE N, HE Z D, LIU L, et al. Ni2+ guided phase/structure evolution and ultra-wide bandwidth microwave absorption of CoxNi1-xalloy hollow microspheres[J]. Chemical Engineering Journal,2020,381:122743. DOI: 10.1016/j.cej.2019.122743

    [9]

    GHASEMI A, HOSSIENPOUR A, MORISAKO A, et al. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite[J]. Journal of Magnetism and Magnetic Materials,2006,302(2):429-435. DOI: 10.1016/j.jmmm.2005.10.006

    [10]

    QUAN L, QIN F X, ESTEVEZ D, et al. Magnetic graphene for microwave absorbing application: Towards the lightest graphene-based absorber[J]. Carbon,2017,125:630-639. DOI: 10.1016/j.carbon.2017.09.101

    [11]

    ZHANG D Q, WANG H H, CHENG J Y. Conductive WS2-NS/CNTs hybrids based 3D ultra-thin mesh electromagnetic wave absorbers with excellent absorption performance[J]. Applied Surface Science,2020,528:147052. DOI: 10.1016/j.apsusc.2020.147052

    [12]

    ZONG M, HUANG Y, ZHANG N. Influence of RGO/ferrite ratios and graphene reduction degree on microwave absorption properties of graphene composites[J]. Journal of Alloys and Compounds,2015,644:491-501. DOI: 10.1016/j.jallcom.2015.05.073

    [13]

    DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon,2021,179:566-578. DOI: 10.1016/j.carbon.2021.04.050

    [14] 田小永, 尚振涛, 尹丽仙, 等. 石墨烯超材料吸波结构3D打印[J]. 航空制造技术, 2019, 62(5): 14-22.

    TIAN Xiaoyong, SHANG Zhentao, YIN Lixian, et al. 3D printing of graphene metamaterial absorbing structure[J]. Aviation Manufacturing Technology, 2019, 62(5): 14-22(in Chinese).

    [15]

    TIAN X Y, YIN M, LI D C, et al. 3D printing: A useful tool for the fabrication of artificial electromagnetic (EM) medium[J]. Rapid Prototyping Journal,2016,22(2):251-257. DOI: 10.1108/RPJ-09-2014-0122

    [16] 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成形研究进展[J]. 复合材料学报, 2021, 38(5):1371-1386.

    FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica,2021,38(5):1371-1386(in Chinese).

    [17]

    HU C, LI Z Y, WANG Y L, et al. Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: Reduced graphene oxide or carbon nanotubes[J]. Journal of Materials Chemistry C,2017,5(9):2318-2328. DOI: 10.1039/C6TC05261D

    [18]

    HADI N. Interlayer fracture energy of 3D-printed PLA material[J]. The International Journal of Advanced Manufacturing Technology,2019,101(5-8):1959-1965. DOI: 10.1007/s00170-018-3031-5

    [19]

    KIM S S, JO S B, GUEON K I, et al. Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies[J]. IEEE Transactions on Magnetics, 1991, 27(2): 5462-5464.

    [20]

    THAKUR P T, DEEPIKA S C. Recent advances on synthesis, characterization and high frequency applications of Ni-Zn ferrite nanoparticles[J]. Journal of Magnetism and Magnetic Materials,2021,530:167925. DOI: 10.1016/j.jmmm.2021.167925

    [21] 陈国红, 周芳灵, 赵丽平, 等. 铁氧体磁性材料的吸波机理及改善吸波性能的研究进展[J]. 化工进展, 2015, 34(11):3965-3969.

    CHEN Guohong, ZHOU Fangling, ZHAO Liping, et al. Research progress on absorbing mechanism and improving absorbing properties of ferrite magnetic materials[J]. Progress in Chemical Industry,2015,34(11):3965-3969(in Chinese).

    [22] 王国栋. 铁氧体吸波材料研究进展[J]. 科技风, 2019(29):166-167.

    WANG Guodong. Research progress of ferrite microwave absorbing materials[J]. Science and Technology Wind,2019(29):166-167(in Chinese).

    [23]

    FIORILLO F B, ORIANO C B. Eddy-current losses in Mn-Zn ferrites[J]. IEEE Transactions on Magnetics,2014,50(1):1-9.

    [24]

    WANG W J, ZANG C G, JIAO Q J. Fabrication and performance optimization of Mn-Zn ferrite/EP composites as microwave absorbing materials[J]. Chinese Physics B,2013,22(12):482-486.

    [25]

    SONG J, WANG L X, XU N C, et al. Microwave electromagnetic and absorbing properties of Dy3+ doped MnZn ferrites[J]. Journal of Rare Earth (English Edition),2010,28(3):451-455. DOI: 10.1016/S1002-0721(09)60132-0

    [26]

    QIAN Y, YAO Z J, LIN H Y, et al. Mechanical and microwave absorption properties of 3D-printed Li0.44Zn0.2Fe2.36O4/polylactic acid composites using fused deposition modeling[J]. Journal of Materials Science: Materials in Electronics,2018,29(22):19296-19307. DOI: 10.1007/s10854-018-0056-3

    [27] 吴海华, 胡正浪, 李雨恬, 等. 铁镍合金/聚乳酸复合材料的熔融沉积成形制备及其电磁吸收性能和力学性能[J]. 复合材料学报, 2022, 39(1):172-182. DOI: 10.13801/j.cnki.fhclxb.20210311.003

    WU Haihua, HU Zhenglang, LI Yutian, et al. Electromagnetic absorption properties and mechanical properties of Fe-Ni alloy/polylactic acid composites fabricated by fused deposition modeling[J]. Acta Materiae Compositae Sinica,2022,39(1):172-182(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210311.003

    [28] 中国国家标准化管理委员会. 塑料拉伸性能的测定: GB/T 1040—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Plastics: Determination of tensile properties: GB/T 1040—2006[S]. Beijing: China Standards Press, 2006(in Chinese).

    [29] 周尧, 赵雄燕, 孙占英, 等. 聚乳酸/羟基磷灰石复合材料研究进展[J]. 应用化工, 2017, 46(10):2014-2018. DOI: 10.3969/j.issn.1671-3206.2017.10.037

    ZHOU Yao, ZHAO Xiongyan, SUN Zhanying, et al. Research progress of polylactic acid/hydroxyapatite composites[J]. Applied Chemical Industry,2017,46(10):2014-2018(in Chinese). DOI: 10.3969/j.issn.1671-3206.2017.10.037

    [30] 刘顺华. 电磁波屏蔽及吸波材料[M]. 北京: 化学工业出版社, 2007.

    LIU Shunhua. Electromagnetic wave shielding and absorbing material[M]. Beijing: Chemical Industry Press, 2007(in Chinese).

    [31] 朱洪立, 张玉军, 于名讯, 等. 溶胶-凝胶/燃烧法制备锰锌铁氧体及其吸波性能研究[J]. 人工晶体学报, 2014, 43(6):1465-1470. DOI: 10.3969/j.issn.1000-985X.2014.06.028

    ZHU Hongli, ZHANG Yujun, YU Mingxun, et al. Preparation of Mn-Zn-ferrite by sol-gel/combustion method and its microwave absorbing properties[J]. Journal of Intraocular Lens,2014,43(6):1465-1470(in Chinese). DOI: 10.3969/j.issn.1000-985X.2014.06.028

    [32]

    SUN Q L, SUN L, CAI Y Y, et al. Fe3O4-intercalated reduced graphene oxide nanocomposites with enhanced microwave absorption properties[J]. Ceramics International,2019,45(15):18298-18305. DOI: 10.1016/j.ceramint.2019.06.042

    [33]

    CHEN Y J, ZHANG F, ZHAO G G, et al. Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods[J]. The Journal of Physical Chemistry,2010,114(20):9239-9244. DOI: 10.1021/jp912178q

    [34]

    LIU G Z, JIANG W, SUN D P, et al. One-pot synthesis of urchinlike Ni nanoparticles/RGO composites with extraordinary electromagnetic absorption properties[J]. Applied Surface Science,2014,314:523-529. DOI: 10.1016/j.apsusc.2014.07.041

    [35]

    CAO M S, CAI Y Z, HE P, et al. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding[J]. Chemical Engineering Journal,2019,359:1265-1302. DOI: 10.1016/j.cej.2018.11.051

    [36]

    ZHANG H X, SHI C, JIA Z R, et al. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption[J]. Journal of Colloid and Interface Science,2021,584:382-394. DOI: 10.1016/j.jcis.2020.09.122

    [37]

    XU D W, YANG S, CHEN P, et al. 3D nitrogen-doped porous magnetic graphene foam-supported Ni nanocomposites with superior microwave absorption properties[J]. Journal of Alloys and Compounds,2019,782:600-610. DOI: 10.1016/j.jallcom.2018.12.239

    [38]

    WANG Y L, WANG G S, ZHANG X J, et al. Porous carbon polyhedrons coupled with bimetallic CoNi alloys for frequency selective wave absorption at ultralow filler loading[J]. Journal of Materials Science & Technology,2022,103(8):34-41.

    [39]

    SHEN J Y, ZHANG D F, HAN C G, et al. Three-dimensional flower-like FeCoNi/reduced graphene oxide nanosheets with enhanced impedance matching for high-performance electromagnetic wave absorption[J]. Journal of Alloys and Compounds,2021,883:160877. DOI: 10.1016/j.jallcom.2021.160877

    [40]

    YOU C Y, FAN X D, TIAN N, et al. Improved electromagnetic microwave absorption of the annealed pre-sintered precursor of Mn-Zn ferrite[J]. Journal of Magnetism and Magnetic Materials,2015,381:377-381. DOI: 10.1016/j.jmmm.2014.12.089

    [41]

    SUN Y, WANG Y J, MA H J, et al. Fe3C nanocrystals encapsulated in N-doped carbon nanofibers as high-efficient microwave absorbers with superior oxidation/corrosion resistance[J]. Carbon,2021,178:515-527. DOI: 10.1016/j.carbon.2021.03.032

    [42] 叶喜葱, 欧阳宾, 杨超, 等. 石墨烯-羰基铁粉线材的制备及其吸波性能分析[J]. 复合材料学报, 2022, 39(7):3292-3302. DOI: 10.13801/j.cnki.fhclxb.20210819.008

    YE XiCong, OUYANG Bin, YANG Chao, et al. Preparation of graphene-carbonyl iron powder wire and analysis of its wave absorption performance[J]. Acta Materiae Compositae Sinica,2022,39(7):3292-3302(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210819.008

    [43]

    LI Z J, HOU Z L, SONG W L, et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broadened microwave absorption[J]. Nanoscale,2016,8(19):10415-10424. DOI: 10.1039/C6NR00223D

    [44]

    LI Z X, LI X H, ZONG Y. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers[J]. Carbon,2017,115:493-502. DOI: 10.1016/j.carbon.2017.01.036

    [45]

    XU X Q, RAN F T, FAN Z M, et al. Acidified bimetallic MOFs constructed Co/N co-doped low dimensional hybrid carbon networks for high-efficiency microwave absorption[J]. Carbon,2021,171:211-220. DOI: 10.1016/j.carbon.2020.08.070

    [46]

    XUE W, YANG G, BI S, et al. Construction of caterpillar-like hierarchically structured Co/MnO/CNTs derived from MnO2/ZIF-8@ZIF-67 for electromagnetic wave absorption[J]. Carbon,2021,173:521-527. DOI: 10.1016/j.carbon.2020.11.016

    [47]

    CAO F H, XU J, LIU M J, et al. Regulation of impedance matching feature and electronic structure of nitrogen-doped carbon nanotubes for high-performance electromagnetic wave absorption[J]. Journal of Materials Science & Technology,2022,108(13):1-9.

    [48]

    FENG J, ZONG Y, SUN Y. Optimization of porous FeNi3/N-GN composites with superior microwave absorption performance[J]. Chemical Engineering Journal,2018,345:441-451. DOI: 10.1016/j.cej.2018.04.006

    [49]

    WANG H Y, SUN X B, YANG S H, et al. 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption[J]. Nano-Micro Letters,2021,13(12):330-344.

    [50]

    ZHANG X J, WANG G S, CAO W Q, et al. Enhanced microwave absorption property of reduced graphene oxide (RGO)-MnFe2O4 nanocomposites and polyvinylidene fluoride[J]. ACS Applied Materials & Interfaces,2014,6(10):7471-7478.

    [51]

    SHU J C, CAO M S. Graphene-based electromagnetic functional materials[J]. Surface Technology,2020,49(2):29-40.

  • 期刊类型引用(8)

    1. 吕艾娟,孙俊涛,胡青青,米欣,肖强. EDOT-含氟聚合物涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2023(04): 408-415 . 百度学术
    2. 刘创华,胡青青,梁晓蕾,米欣,周强,朱伟东,肖强. 石墨烯/含氟聚丙烯酸酯复合材料涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2021(03): 278-285 . 百度学术
    3. 梁晓蕾,刘创华,米欣,朱伟东,周强,肖强. SiO_2或TiO_2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能. 复合材料学报. 2020(08): 1832-1840 . 本站查看
    4. 王霞,侯丽,张代雄,周雯洁,古月. 聚苯胺在防腐方面的研究及应用现状. 表面技术. 2019(01): 208-215 . 百度学术
    5. 郝建军,李文若,林雪. (H_4N)_2S对电合成CoO/聚苯胺复合膜腐蚀性能的影响. 复合材料学报. 2019(07): 1618-1624 . 本站查看
    6. 李庆鲁,安成强,郝建军. 改性水性丙烯酸防腐涂料的研究进展. 电镀与涂饰. 2019(11): 555-560 . 百度学术
    7. 高晓辉,李玉峰,李继玉,祝晶晶. 磷化聚苯胺用量对复合涂层防腐蚀性能的影响. 精细化工. 2018(06): 934-940+948 . 百度学术
    8. 胡传波,厉英,孔亚州,丁玉石. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能. 复合材料学报. 2017(06): 1167-1176 . 本站查看

    其他类型引用(8)

图(14)  /  表(3)
计量
  • 文章访问数:  991
  • HTML全文浏览量:  702
  • PDF下载量:  69
  • 被引次数: 16
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-06-23
  • 录用日期:  2022-07-12
  • 网络出版日期:  2022-07-26
  • 刊出日期:  2023-05-14

目录

    /

    返回文章
    返回