CFRP薄壁结构多尺度建模及耐撞性分析

Multi-scale modeling and crashworthiness analysis of CFRP thin-walled structures

  • 摘要: 碳纤维增强树脂基复合材料(CFRP)具有较高的比强度、比刚度及显著的轻量化效果,因此CFRP薄壁结构被作为能量吸收装置广泛应用于工程领域。以单向碳纤维复合材料为研究对象,利用扫描电镜获取其微观胞元结构参数及纤维体积分数,构建能够准确反映其微观形态的代表性体积单元(Representative volume element,RVE),通过加载周期性边界条件及单位载荷,获取材料宏观等效弹性参数,并开展实验验证。随后,开发基于微观力学的失效准则及损伤演化方程,并结合材料力学特点,构建CFRP宏观损伤模型,最终形成一套基于微观失效的多尺度损伤模型。在此基础上,对CFRP薄壁圆管在轴向准静态载荷下的压溃性能进行数值仿真,并与实验结果进行对比,验证了多尺度模型的仿真精度。最后,基于验证后的多尺度有限元模型,研究了碳纤维铺层角度及碳纤维体积分数对CFRP薄壁结构耐撞性的影响。结果表明:铺层角度和碳纤维体积分数对CFRP圆管耐撞性能具有较大影响。

     

    Abstract: Carbon fiber reinforced plastics (CFRP) are of high specific strength, specific stiffness and significant lightweight effect. Therefore, CFRP thin-walled structures are widely used as energy-absorbing devices in engineering fields. This paper took unidirectional CFRP as research object. The micro-scale structural parameters and fiber volume fraction were obtained by using scanning electron microscope. Then, a representative volume element (RVE) was established, which was capable to accurately reflect its micro morphology. By applying periodic boundary conditions and unit load, the macro equivalent elastic parameters were acquired and then verified by experimental tests. Subsequently, the failure criterion and damage evolution equation based on micromechanics were developed. Combined with the mechanical characteristics of unidirectional CFRP, the macro damage model was developed, and finally forming a set of multi-scale damage model based on micro failure. On this basis, the crashworthiness performance of CFRP thin-walled circular tube under axial quasi-static load was numerically explored, and the numerical results were verified through the crushing test. Based on the verified multi-scale finite element model, the effects of carbon fiber ply angle and carbon fiber volume fraction on the crashworthiness were investi-gated. The results show that the ply angle and carbon fiber volume fraction have great impact on the crashworthiness characteristics of CFRP thin-walled structures.

     

/

返回文章
返回