Abstract:
In order to study the freeze-thaw resistance of rice husk ash rubber concrete (RRC), the mass loss, relative dynamic modulus loss, strength loss and microstructure characteristics of normal concrete (NC) and RRC after freeze-thaw cycles in chloride environment were compared and analyzed, and the relationship between relative dynamic modulus and relative compressive strength was fitted and analyzed. The results show that with the increase of freeze-thaw cycles, the pit erosion on the concrete surface becomes more obvious, the internal pores increase, microcracks develop and penetrate, and the macroscopic strength decreases significantly. The relative dynamic modulus has a good correlation with the compressive strength, and the fitting structure is better. The high elasticity of rubber and high pozzolanic effect of rice husk ash effectively alleviate the damage caused by frost heaving force, and the damage degree of RRC in each freeze-thaw stage is significantly better than that of NC. When the content of rice husk ash (mass ratio to cementitious materials) is 10% and the content of rubber (volume replacement of sand) is 10%, the comprehensive optimum of mechanical properties and freeze-thawing resistance of RRC is the best. After 120 freeze-thaw cycles, the loss rate of compressive strength is 18% lower than that of NC.