先进树脂基复合材料纤维褶皱缺陷阵列超声全聚焦成像

周正干, 朱甜甜, 马腾飞, 李洋

周正干, 朱甜甜, 马腾飞, 等. 先进树脂基复合材料纤维褶皱缺陷阵列超声全聚焦成像[J]. 复合材料学报, 2022, 39(9): 4384-4392. DOI: 10.13801/j.cnki.fhclxb.20220707.001
引用本文: 周正干, 朱甜甜, 马腾飞, 等. 先进树脂基复合材料纤维褶皱缺陷阵列超声全聚焦成像[J]. 复合材料学报, 2022, 39(9): 4384-4392. DOI: 10.13801/j.cnki.fhclxb.20220707.001
ZHOU Zhenggan, ZHU Tiantian, MA Tengfei, et al. Array ultrasonic total-focus imaging for advanced resin matrix composite fiber wrinkle defect arrays[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4384-4392. DOI: 10.13801/j.cnki.fhclxb.20220707.001
Citation: ZHOU Zhenggan, ZHU Tiantian, MA Tengfei, et al. Array ultrasonic total-focus imaging for advanced resin matrix composite fiber wrinkle defect arrays[J]. Acta Materiae Compositae Sinica, 2022, 39(9): 4384-4392. DOI: 10.13801/j.cnki.fhclxb.20220707.001

先进树脂基复合材料纤维褶皱缺陷阵列超声全聚焦成像

基金项目: 国家商用飞机制造工程技术研究中心创新基金(COMAC-SFGS-2021-666)
详细信息
    通讯作者:

    周正干,博士,教授,博士生导师,研究方向为超声无损检测 E-mail: zzhenggan@buaa.edu.cn

  • 中图分类号: V467;TB553

Array ultrasonic total-focus imaging for advanced resin matrix composite fiber wrinkle defect arrays

Funds: National Commercial Aircraft Manufacturing Engineering Technology Research Center Innovation Fund Project (COMAC-SFGS-2021-666)
  • 摘要: 先进树脂基复合材料因其密度低、强度高等特点,广泛应用于航空航天领域。纤维褶皱是先进树脂基复合材料制造过程中产生的一种缺陷,常规超声检测效率低,而阵列超声全聚焦成像检测技术则依赖准确的声传播延时。针对先进树脂基复合材料中的各向异性和多层折射界面而导致声波延时计算困难的问题,提出了一种使用Viterbi搜索算法的声线示踪方法,用于计算阵列超声全聚焦成像检测的时间延迟。对5.92 mm厚的多向碳纤维复合材料层压板进行阵列超声全聚焦成像检测实验,结果表明,使用声线示踪法计算延时,可以使采集的全矩阵信号被准确地相干叠加,有效检测出多向碳纤维复合材料层压板中的纤维褶皱缺陷。
    Abstract: Advanced resin matrix composites were widely used in aerospace applications because of light weight and high strength. Fiber wrinkle defects were one of the defects in advanced resin matrix composites, which were inefficiently detected by conventional ultrasonic inspection, while the array ultrasound total-focus imaging detection technique relies on accurate acoustic propagation delay. To address the problem of difficult acoustic delay calculation due to anisotropy and multilayer refractive interfaces in advanced resin matrix composites, ray tracing method based on the Viterbi search algorithm was proposed for calculating the time delay of array ultrasonic total focus imaging inspection. The results of the array ultrasonic full-focus imaging inspection experiments on 5.92 mm thick multidirectional carbon fiber composite laminates show that the use of the ray tracing method to calculate the delay time allows the collected full-matrix signals to be accurately and coherently superimposed, effectively detecting the fiber winkle defects in multidirectional carbon fiber composite laminates.
  • 图  1   碳纤维增强树脂基复合材料(CFRP)多向板Viterbi声线示踪方法流程图

    Figure  1.   Flow chart of Viterbi ray tracing method for carbon fiber reinforced plastics (CFRP) multidirectional plate

    图  2   4层网格化模型声线示踪示意图

    Figure  2.   Schematic diagram of 4-layer gridded model for ray tracing method

    图  3   CFRP试样褶皱缺陷分布示意图

    Figure  3.   Schematic diagram of the distribution of wrinkle defects in CFRP specimen

    图  4   CFRP试样褶皱缺陷的金相图

    Figure  4.   Metallographic view of CFRP specimen with wrinkle defects

    图  5   在0°、±45°和90°单向铺层中qP波群速度随传播角度的变换

    Figure  5.   Variation of qP-wave group velocity with propagation angle for 0°, ±45° and 90° unidirectional CFRP plies

    图  6   第1个阵元发射不同阵元接收声线路径示意图

    Figure  6.   Schematic diagram of ray path for the 1st array transmit and the different array receive

    图  7   三种不同方法计算的qP波传播时间差曲线

    Figure  7.   qP wave propagation time difference curves calculated by three different methods

    BRM—Back-wall reflection method; tij—Time from the ith element transmitting sound wave to the jth element receiving sound wave

    图  8   褶皱1均质化全聚焦方法(TFM)和声线示踪TFM成像

    Figure  8.   Images of wrinkle 1 isotropic total focusing method (TFM) and ray tracing TFM

    图  9   褶皱2均质化TFM和声线示踪TFM成像

    Figure  9.   Images of wrinkle 2 isotropic TFM and ray tracing TFM

  • [1]

    MEOLA C, BOCCARDI S, CARLOMAGNO G, et al. Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics[J]. Composite Structures,2015,134:845-853. DOI: 10.1016/j.compstruct.2015.08.119

    [2]

    REVERDY F, MAHAUT S, DOMINGUEZ N, et al. Simulation of ultrasonic inspection of curved composites using a hybrid semi-analytical/numerical code[C]//AIP Conference Proceedings. American Institute of Physics, 2015, 1650(1): 1047-1055.

    [3] 蔡菊生. 先进复合材料在航空航天领域的应用[J]. 合成材料老化与应用, 2018, 47(6): 94-97.

    CAI Jusheng. Application of advanced composite mater-ials in aerospace[J]. Synthetic Aging and Application, 2018, 47(6): 94-97(in Chinese).

    [4] 张婷, 黄爱华, 李向前. 褶皱缺陷的检测及对力学性能的影响研究[J]. 航空制造技术, 2021, 64(8):78-83. DOI: 10.16080/j.issn1671-833x.2021.08.078

    ZHANG Ting, HUANG Aihua, LI Xiangqian. Research on wrinkle defects inspection and influence of wrinkle defects on mechanical properties[J]. Aeronautical Manufacturing Technology,2021,64(8):78-83(in Chinese). DOI: 10.16080/j.issn1671-833x.2021.08.078

    [5] 曹弘毅, 马蒙源, 丁国强, 等. 复合材料层压板分层缺陷超声相控阵检测与评估[J]. 材料工程, 2021, 49(2):149-157. DOI: 10.11868/j.issn.1001-4381.2020.000405

    CAO Hongyi, MA Mengyuan, DING Guoqiang, et al. Delamination defects testing and evaluation of composite laminates using phased array ultrasonic technique[J]. Journal of Materials Engineering,2021,49(2):149-157(in Chinese). DOI: 10.11868/j.issn.1001-4381.2020.000405

    [6] 梁小林, 许希武, 林智育. 复合材料层板低速冲击后疲劳性能实验研究[J]. 材料工程, 2016, 44(12):100-106. DOI: 10.11868/j.issn.1001-4381.2016.12.016

    LIANG Xiaolin, XU Xiwu, LIN Zhiyu. Fatigue performance of composite laminates after low-velocity impact[J]. Jour-nal of Materials Engineering,2016,44(12):100-106(in Chinese). DOI: 10.11868/j.issn.1001-4381.2016.12.016

    [7] 王宝瑞, 丁新静. 纤维增强复合材料的无损探伤技术探讨[J]. 复合材料科学与工程, 2014(4):91-94. DOI: 10.3969/j.issn.1003-0999.2014.04.020

    WANG Baorui, DING Xinjing. The non-destructive test of fiber-reinforced composites[J]. Composites Science and Engineering,2014(4):91-94(in Chinese). DOI: 10.3969/j.issn.1003-0999.2014.04.020

    [8]

    ZARDAN J P, GUEUDRÉ C, CORNELOUP G. Study of induced ultrasonic deviation for the detection and identification of ply waviness in carbon fibre reinforced polymer[J]. NDT& E International,2013,56:1-9.

    [9]

    LI W, CHO Y, ACHENBACH J D. Detection of thermal fatigue in composites by second harmonic Lamb waves[J]. Smart Materials and Structures,2012,21(8):085019. DOI: 10.1088/0964-1726/21/8/085019

    [10]

    JIANG C, ZHANG C, LI W, et al. Assessment of damage in composites using static component generation of ultrasonic guided waves[J]. Smart Materials and Structures,2022,31(4):045025. DOI: 10.1088/1361-665X/ac5a77

    [11]

    PAIN D, DRINKWATER B W. Detection of fibre waviness using ultrasonic array scattering data[J]. Journal of Nondestructive Evaluation,2013,32(3):215-227. DOI: 10.1007/s10921-013-0174-z

    [12]

    NELSON L, SMITH R. Fibre direction and stacking sequence measurement in carbon fibre composites using Radon transforms of ultrasonic data[J]. Composites Part A: Applied Science and Manufacturing,2019,118:1-8. DOI: 10.1016/j.compositesa.2018.12.009

    [13]

    YANG X, VERBOVEN E, JU B F, et al. Comparative study of ultrasonic techniques for reconstructing the multilayer structure of composites[J]. NDT & E International,2021,121:102460.

    [14]

    SMITH R A, NELSON L J, MIENCZAKOWSKI M J, et al. Ultrasonic analytic-signal responses from polymer-matrix composite laminates[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2017,65(2):231-243. DOI: 10.1109/TUFFC.2017.2774776

    [15]

    YANG X, VERBOVEN E, JU B F, et al. Parametric study on interply tracking in multilayer composites by analytic-signal technology[J]. Ultrasonics,2021,111:106315. DOI: 10.1016/j.ultras.2020.106315

    [16]

    FAN C, CALEAP M, PAN M, et al. A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation[J]. Ultrasonics,2014,54(7):1842-1850. DOI: 10.1016/j.ultras.2013.12.012

    [17]

    HUNTER A J, DRINKWATER B W, WILCOX P D. The wavenumber algorithm for full-matrix imaging using an ultrasonic array[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2008,55(11):2450-2462. DOI: 10.1109/TUFFC.952

    [18]

    ROKHLIN S, WANG L. Ultrasonic waves in layered anisotropic media: Characterization of multidirectional compo-sites[J]. International Journal of Solids and Structures,2002,39(21-22):5529-5545. DOI: 10.1016/S0020-7683(02)00500-0

    [19] 曹欢庆. CFRP构件R区相控阵超声检测原理和方法研究[D]. 大连: 大连理工大学, 2020.

    CAO Huanqing. Research on principle and method for phased array ultrasonic testing of radii part in CFRP components[D]. Dalian: Dalian University of Technology, 2020(in Chinese).

    [20]

    GRAGER J C, SCHRAPP M, MOOSHOFER H, et al. Ultrasonic imaging of carbon fiber-reinforced plastics using the full matrix capture data acquisition technique[C]// 19th World Conference on Nondestructive Testing, Munich, 2016.

    [21]

    MOSER T. Shortest path calculation of seismic rays[J]. Geophysics,1991,56(1):59-67. DOI: 10.1190/1.1442958

    [22]

    NOWERS O, DUXBURY D J, ZHANG J, et al. Novel ray-tracing algorithms in NDE: Application of Dijkstra and A* algorithms to the inspection of an anisotropic weld[J]. NDT & E International,2014,61:58-66.

    [23]

    ZHOU H, HAN Z, DU D, et al. A combined marching and minimizing ray-tracing algorithm developed for ultrasonic array imaging of austenitic welds[J]. NDT & E International,2018,95:45-56.

    [24]

    LIN L, CAO H, LUO Z. Dijkstra’s algorithm-based ray tracing method for total focusing method imaging of CFRP laminates[J]. Composite Structures,2019,215:298-304. DOI: 10.1016/j.compstruct.2019.02.086

    [25]

    CAO H, GUO S, ZHANG S, et al. Ray tracing method for ultrasonic array imaging of CFRP corner part using homogenization method[J]. NDT & E International,2021,122:102493.

    [26]

    ROSE J L. Ultrasonic guided waves in silid media[M]. Cambridge: Cambridge University Press, 2014.

    [27]

    LIN L, CAO H, LUO Z. Total focusing method imaging of multidirectional CFRP laminate with model-based time delay correction[J]. NDT & E International,2018,97:51-58.

  • 期刊类型引用(8)

    1. 徐康康,程蹈,刘点,陈玉霞,涂道伍,郭勇,吴自成. 无损检测技术在纤维增强聚合物复合材料机械损伤监测中的应用进展. 塑料工业. 2024(02): 8-15 . 百度学术
    2. 孟凌霄,石文泽,卢超,黄良,凌建. 碳纤维增强树脂基复合材料气瓶电磁超声在线监测方法及失效机制. 复合材料学报. 2024(04): 1820-1829 . 本站查看
    3. 熊政辉,陈俊超,肖树坤,荆砚,何喜,陈尧. 应用于斜楔块的子孔径虚拟源全聚焦成像. 应用声学. 2024(03): 625-634 . 百度学术
    4. 曹欢庆,朱启民,赵培含,何梓科,郭师峰. 复杂型面结构超声成像检测研究进展. 仪器仪表学报. 2024(06): 42-53 . 百度学术
    5. 李荣光,朱甜甜,孙伶,陈斯迅,周文彬,周正干. 管道碳纤维复合材料修复层阵列超声检测方法提高检测精度. 石油钻采工艺. 2024(06): 728-742 . 百度学术
    6. 夏玉秀,张义凤,薛峰. 相控阵超声检测技术在航空领域应用研究进展. 无损探伤. 2023(04): 6-10+38 . 百度学术
    7. 杨红娟,杨正岩,杨雷,单一男,林奎旭,武湛君. 碳纤维复合材料损伤的超声检测与成像方法研究进展. 复合材料学报. 2023(08): 4295-4317 . 本站查看
    8. 陈学宽,龙盛蓉,宋奕霖,邹越豪,李志农. 基于二维等效声速的频域全聚焦超声成像研究. 仪器仪表学报. 2023(08): 130-140 . 百度学术

    其他类型引用(5)

图(9)
计量
  • 文章访问数:  1049
  • HTML全文浏览量:  650
  • PDF下载量:  183
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-06-12
  • 修回日期:  2022-06-22
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-07-07
  • 刊出日期:  2022-08-21

目录

    /

    返回文章
    返回