WO3-x/CFs三相催化剂的制备及其可见光催化转化甲烷制甲醇

Preparation of WO3-x/CFs triphase catalyst and visible-light photocatalytic conversion of methane to methanol

  • 摘要: 将甲烷选择性转化为平台分子甲醇是有效利用天然气资源的理想途径之一,低碳排放的光催化技术可在室温常压下活化与转化甲烷,但水相光催化体系的甲烷转化性能仍较低。采用水热法首先合成富含氧缺陷的氧化钨(WO3-x),借助聚四氟乙烯浓缩液(PTFE)将WO3-x负载至碳纤维(CFs)表面制备WO3-x/CFs三相光催化剂,改变PTFE添加量可调控WO3-x/CFs的表面浸润性,通过XRD、SEM、水接触角、电子顺磁共振波谱仪(EPR)和低温氮吸脱附等测试技术对催化剂的形貌、结构与表面特性进行系统表征。可见光催化实验结果表明:WO3-x/CFs三相体系可显著提升甲烷至甲醇的转化性能,最优催化剂WO3-x/CFs-0.3的甲烷转化量为2522.20 μmol·g−1,分别为WO3-x/氧化铟锡导电玻璃(Glas)与粉末WO3-x两相体系的1.76倍和2.48倍;相应的甲醇产生量为1918.83 μmol·g−1,分别为WO3-x/Glas与粉末WO3-x体系的2.81倍和4.69倍,同时三相体系的甲醇选择性高达76.76%。WO3-x/CFs光催化性能增强主要源于疏水性催化剂形成的气-液-固三相界面,消耗的甲烷可经CFs气体传输通道直接传质至催化界面,促进甲烷分子活化与转化。此外,三相光催化体系循环稳定性优异,WO3-x/CFs-0.3经6次循环后甲醇产生量仍可达1506.98 μmol·g−1

     

    Abstract: Selective conversion of methane into platform molecule methanol is one of the ideal ways to effectively utilize natural gas resources. Photocatalytic technology with low carbon emission can activate and transform methane at room temperature and atmospheric pressure, whereas the methane conversion performance of aqueous photocatalytic system is still low. Oxygen defects-rich WO3-x was firstly synthesized through hydrothermal method and then triphase photocatalyst WO3-x/CFs was constructed by loading WO3-x on carbon fiber (CFs) with polytetrafluoroethylene concentrate (PTFE). Changing the addition amount of PTFE, the surface wettability of WO3-x/CFs can be regulated. The morphology, structure and surface properties of triphase catalysts were systematically characterized by XRD, SEM, water contact angle, electron paramagnetic resonance (EPR) and low temperature nitrogen adsorption-desorption. The results of visible-light photocatalytic experiments show that WO3-x/CFs triphase system can significantly improve the conversion performance of methane into methanol. Methane conversion amount of the optimal WO3-x/CFs-0.3 catalyst is 2522.20 μmol·g−1, which is 1.76 times and 2.48 times of WO3-x/Indium tin oxide conducting glass (Glas) and powder WO3-x diphase systems, respectively. Methanol yield of WO3-x/CFs-0.3 triphase system is 1918.83 μmol·g−1, which is 2.81 times and 4.69 times of WO3-x/Glas and powder WO3-x systems respectively, and meanwhile methanol selectivity of triphase WO3-x/CFs system is up to 76.76%. The enhanced photocatalytic performance of WO3-x/CFs is primarily due to the gas-liquid-solid triphase interface formed by the hydrophobic catalyst. The consumed methane can be directly transferred to the catalytic interface through gas transport channel in CFs, promoting the activation and conversion of methane molecules. Additionally, the triphase photocatalytic system shows excellent cyclic stability and the methanol yield of WO3-x/CFs-0.3 can still reach 1506.98 μmol·g−1 after 6 cycles.

     

/

返回文章
返回