混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能

霍彦霖, 孙华阳, 刘天安, 和怡馨, 陈智韬, 吕承博, 杨英姿

霍彦霖, 孙华阳, 刘天安, 等. 混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J]. 复合材料学报, 2022, 39(11): 5086-5097. DOI: 10.13801/j.cnki.fhclxb.20220623.005
引用本文: 霍彦霖, 孙华阳, 刘天安, 等. 混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能[J]. 复合材料学报, 2022, 39(11): 5086-5097. DOI: 10.13801/j.cnki.fhclxb.20220623.005
HUO Yanlin, SUN Huayang, LIU Tian’an, et al. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5086-5097. DOI: 10.13801/j.cnki.fhclxb.20220623.005
Citation: HUO Yanlin, SUN Huayang, LIU Tian’an, et al. Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5086-5097. DOI: 10.13801/j.cnki.fhclxb.20220623.005

混杂纤维增强应变硬化水泥基复合材料抗弯冲击性能

基金项目: 国家自然科学基金(52178797)
详细信息
    通讯作者:

    陈智韬,博士,研究方向为高性能纤维增强复合材料 E-mail: rainczt@hotmail.com

    杨英姿,博士,教授,博士生导师,研究方向为高性能纤维增强复合材料 E-mail: yzyang@hit.edu.cn

  • 中图分类号: TB332

Flexural impact behavior of hybrid fiber-reinforced strain hardening cementitious composites

  • 摘要: 首先研究了在准静态作用下不同纤维掺量及基体强度的混杂纤维增强应变硬化水泥基复合材料(SHCC)的抗压和抗弯性能。实验结果表明,混杂钢纤维可大幅提高SHCC材料的强度,其中抗压强度和抗弯强度分别提高了10.1%和13.9%。其次,采用落锤式冲击系统开展了混杂纤维增强SHCC在不同冲击高度下的动态抗弯性能试验。研究发现,混杂钢纤维的动态抗弯强度比单一纤维SHCC提高了10%~36%,具有明显的应变率效应。混杂纤维增强SHCC能量耗散与弯曲变形之间存在线性关系。最后,提出利用五维表征雷达图综合评估混杂纤维增强SHCC的成本和力学性能,并建议了最佳配合比。
    Abstract: The compressive and flexural properties of hybrid fiber-reinforced strain hardening cementitious composites (SHCC) with different fiber volume fractions and matrix strengths under quasi-static effects were firstly studied. The experimental results show that the hybrid steel fibers can significantly improve the strength of SHCC materials, in which the compressive strength and flexural strength are increased by 10.1% and 13.9%, respectively. Subsequently, dynamic flexural performance tests of hybrid fiber-reinforced SHCC at different impact heights were carried out using a drop hammer impact system. It is found that the dynamic flexural strength of hybrid steel fibers increases by 10%-36% compared with single-fiber SHCC, with a significant strain rate effect. A linear relationship exists between energy dissipation and bending deformation of hybrid fiber-reinforced SHCC. Finally, this paper proposes a comprehensive evaluation of the cost and mechanical properties of hybrid fiber-reinforced SHCC using a five-dimensional characterization radar plots, and suggests the optimal mix ratio.
  • 图  1   聚乙烯醇纤维(PVA) (a)、聚乙烯纤维(PE) (b) 和钢纤维(SF) (c)的形貌对比

    Figure  1.   Comparison of morphology for polyvinyl alcohol fiber (PVA) (a), polyethylene fiber (PE) (b) and steel fiber (SF) (c)

    图  2   混杂纤维增强SHCC准静态三点弯曲试验示意图

    Figure  2.   Quasi-static three-point bending test diagram of hybrid fiber reinforced SHCC

    h—Specimen height; b—Specimen width; L—Specimen span

    图  3   混杂纤维增强SHCC落锤式抗弯冲击试验装置

    Figure  3.   Drop hammer bending impact test machine of hybrid fiber reinforced SHCC

    图  4   混杂纤维增强SHCC的抗压强度

    Figure  4.   Compressive strength of hybrid fiber reinforced SHCC

    图  5   2%PVA/SHCC的平均荷载-挠度曲线

    Figure  5.   Average load-deflection curves of 2%PVA/SHCC

    图  6   准静态下混杂纤维增强SHCC弯曲荷载-挠度曲线

    Figure  6.   Bending load-deflection curve of hybrid fiber-reinforced SHCC under quasi-static condition

    图  7   混杂纤维增强SHCC预实验冲击-时程曲线:(a) 荷载-时程曲线;(b) 冲量-时程曲线

    Figure  7.   Pre-experimental impact time curves of hybrid fiber-reinforced SHCC: (a) Load-time curve; (b) Impulse-time curve

    图  8   混杂纤维增强SHCC加速度时程频率分析和低通滤波:(a) 频谱分析;(b) 加速度信号和滤波结果;(c) 竖向速度-时程结果;(d) 竖向位移-时程结果

    Figure  8.   Acceleration-time frequency analysis and low-pass filtering of hybrid fiber-reinforced SHCC: (a) Spectrum analysis; (b) Acceleration signal and filtering results; (c) Vertical velocity-time results; (d) Vertical displacement-time results

    图  9   动态冲击作用下混杂纤维增强SHCC弯曲荷载-挠度曲线

    Figure  9.   Bending load-deflection curves of hybrid fiber-reinforced SHCC under dynamic impact

    图  10   动态冲击作用下混杂纤维增强SHCC的外力功-挠度曲线

    Figure  10.   External force work-deflection curves of hybrid fiber-reinforced SHCC under dynamic impact

    图  11   考虑力学性能和成本的混杂纤维增强SHCC五维表征雷达图

    Figure  11.   Radar map for five-dimensional evaluation of hybrid fiber-reinforced SHCC considering mechanical properties and cost

    图  12   混杂纤维增强SHCC五维表征雷达图归一化后的包络面积

    Figure  12.   Normalized envelope area of hybrid fiber-reinforced SHCC five-dimensional characterization radar map

    表  1   水泥砂浆基体中水泥、粉煤灰和硅灰的基本参数

    Table  1   Basic parameters of cement, fly ash and silica fume in cement mortar matrix

    IngredientSiO2/wt%Al2O3/wt%CaO/wt%Fe2O3/wt%MgO/wt%SO3/wt%Alkali metal oxides/wt%Loss on ignition/wt%
    Cement21.015.4862.323.981.732.630.501.60
    Fly ash66.5718.953.094.401.220.311.992.58
    Silica fume90.570.770.331.741.680.401.70
    下载: 导出CSV

    表  2   PVA、PE和SF的物理性能参数

    Table  2   Physical properties of PVA, PE and SF

    FiberDiameter/μmLength/mmTensile strength/MPaYoung's modulus/GPaElongation/%Density/(kg·m−3)
    PVA39121600426.001.30
    PE241830001102.420.97
    SF1501328502204.007.80
    下载: 导出CSV

    表  3   混杂纤维增强应变硬化水泥基复合材料(SHCC)试件编号及配合比设计

    Table  3   Specimen codes and mix design of hybrid fiber reinforced strain-hardening cementitious composites (SHCC)

    NumberCement/
    wt%
    Fly ash/
    wt%
    Silica fume/
    wt%
    Sand/
    wt%
    Water/
    wt%
    Fiber content/vol%Superplasticizer/
    wt%
    PVAPESF
    1.5%PVA-0.5%SF/SHCC0.30.60.10.20.251.50.500.010
    2%PVA/SHCC0.30.60.10.20.252.00.010
    2%PVA-0.25%SF/SHCC0.30.60.10.20.252.00.250.010
    1.5%PE-0.5%SF/SHCC0.30.60.10.20.251.50.500.010
    2%PE/SHCC0.30.60.10.20.252.00.010
    2%PE-0.25%SF/SHCC0.30.60.10.20.252.00.250.010
    1.5%HPE-0.5%SF/SHCC0.40.50.10.20.201.50.500.012
    2%HPE/SHCC0.40.50.10.20.202.00.012
    Note: H in the number (HPE) indicates high strength (C100).
    下载: 导出CSV

    表  4   混杂纤维增强SHCC准静态弯曲试验结果

    Table  4   Summary of quasi-static bending test results of hybrid fiber reinforced SHCC

    NumberPLOP/NPMOR/NfMOR/MPaδMOR/mmTELOP/
    (10−3 J)
    EMOR/
    (10−3 J)
    1.5%PVA-0.5%SF/SHCC208.4274.718.38.742.848.52075.7
    2%PVA/SHCC123.3223.214.912.161.737.72325.1
    2%PVA-0.25%SF/SHCC205.1262.317.512.347.758.32781.9
    1.5%PE-0.5%SF/SHCC189.0260.217.321.576.161.14649.1
    2%PE/SHCC99.7228.415.233.292.558.35392.8
    2%PE-0.25%SF/SHCC138.6238.515.933.081.679.76503.4
    1.5%HPE-0.5%SF/SHCC252.9462.230.823.9155.697.915233.2
    2%HPE/SHCC166.4422.828.130.5193.378.715212.7
    Notes: P—Applied load; f—Flexural stress; δ—Deflection; T—Toughness; E—Energy; LOP—Limit of proportionality (first-cracking point); MOR—Modulus of rupture (peak point).
    下载: 导出CSV

    表  5   混杂纤维增强SHCC动态弯曲试验结果

    Table  5   Summary of dynamic bending test results of hybrid fiber-reinforced SHCC

    NumberDrop height/mmPMOR,D/N DIF
    1.5%PVA-0.5%SF/SHCC 50 592.4 2.16
    100 783.4 3.51
    200 1252.5 4.56

    2%PVA/SHCC
    50 543.6 2.44
    100 678.4 3.04
    200 1116.0 5.00
    2%PVA-0.25%SF/SHCC 50 812.0 3.10
    100 982.9 3.75
    200 1307.3 4.98
    1.5%PE-0.5%SF/SHCC 50 519.5 2.00
    100 645.0 2.48
    200 1057.9 4.07
    2%PE/SHCC 50 382.5 1.67
    100 539.1 2.36
    200 989.2 4.33
    2%PE-0.25%SF/SHCC 50 688.5 2.89
    100 791.1 3.32
    200 1054.5 4.42
    1.5%HPE-0.5%SF/SHCC 100 809.2 1.75
    200 1418.9 3.07
    300
    2%HPE/SHCC 100 775.8 1.83
    200 1252.7 2.96
    300 1621.5 3.84
    Notes: DIF= PMOR, D/PMOR; PMOR, D—Dynamic post-cracking load; "–"—Data is not available because accelerometer overrange.
    下载: 导出CSV

    表  6   混杂纤维增强SHCC各原材料的成本价格

    Table  6   Cost of each raw material of hybrid fiber-reinforced SHCC

    IngredientsCementFly ashSilica fumeQuartz sandPVAPESFSuperplasticizer
    Cost/ (¥·kg−1)0.50.21.23200200840
    下载: 导出CSV
  • [1]

    CUROSU I, MUJA E, ISMAILOV M, et al. An experimental-analytical scale-linking study on the crack-bridging mechanisms in different types of SHCC in dependence on fiber orientation[J]. Cement and Concrete Research,2022,152:106650. DOI: 10.1016/j.cemconres.2021.106650

    [2]

    LU D, ZHONG J. Carbon-based nanomaterials engineered cement composites: A review[J]. Journal of Infrastructure Preservation and Resilience, 2022, 3(1):1-20.

    [3]

    LIU T, BAI R, CHEN Z, et al. Tailoring of polyethylene fiber surface by coating silane coupling agent for strain hardening cementitious composite[J]. Construction and Building Materials,2021,278:122263. DOI: 10.1016/j.conbuildmat.2021.122263

    [4]

    YANG E, LI V C. Strain-rate effects on the tensile behavior of strain-hardening cementitious composites[J]. Construction and Building Materials,2014,52:96-104. DOI: 10.1016/j.conbuildmat.2013.11.013

    [5]

    YAO J, LEUNG C K Y. Scaling up modeling of strain-hardening cementitious composites based on beam theory: From single fiber to composite[J]. Cement and Concrete Composites,2020,108:103534. DOI: 10.1016/j.cemconcomp.2020.103534

    [6]

    CUROSU I, LIEBSCHER M, BURK S, et al. Influence of fiber type on the tensile behavior of high-strength strain-hardening cement-based composites (SHCC) at elevated temperatures[J]. Materials & Design,2021,198:109397.

    [7]

    MA H, YI C, WU C. Review and outlook on durability of engineered cementitious composite (ECC)[J]. Construction and Building Materials,2021,287:122719. DOI: 10.1016/j.conbuildmat.2021.122719

    [8]

    YOO D, BANTHIA N. High-performance strain-hardening cementitious composites with tensile strain capacity exceeding 4%: A review[J]. Cement and Concrete Compo-sites,2022,125:104325. DOI: 10.1016/j.cemconcomp.2021.104325

    [9]

    LI V C, BOS F P, YU K, et al. On the emergence of 3D printable engineered, strain hardening cementitious compo-sites (ECC/SHCC)[J]. Cement and Concrete Research,2020,132:106038. DOI: 10.1016/j.cemconres.2020.106038

    [10]

    ZHANG S, LI V C, YE G. Micromechanics-guided development of a slag/fly ash-based strain-hardening geopolymer composite[J]. Cement and Concrete Composites,2020,109:103510. DOI: 10.1016/j.cemconcomp.2020.103510

    [11]

    ZHANG D, YU J, WU H, et al. Discontinuous micro-fibers as intrinsic reinforcement for ductile engineered cementitious composites (ECC)[J]. Composites Part B: Engineering,2020,184:107741. DOI: 10.1016/j.compositesb.2020.107741

    [12]

    GUAN X, LI Y, LIU T, et al. An economical ultra-high ductile engineered cementitious composite with large amount of coarse river sand[J]. Construction and Building Materials,2019,201:461-472. DOI: 10.1016/j.conbuildmat.2018.12.207

    [13]

    CUROSU I, LIEBSCHER M, ALSOUS G, et al. Tailoring the crack-bridging behavior of strain-hardening cement-based composites (SHCC) by chemical surface modification of poly(vinyl alcohol) (PVA) fibers[J]. Cement and Concrete Composites,2020,114:103722. DOI: 10.1016/j.cemconcomp.2020.103722

    [14]

    YU K, DING Y, LIU J, et al. Energy dissipation characteris-tics of all-grade polyethylene fiber-reinforced engineered cementitious composites (PE-ECC)[J]. Cement and Concrete Composites,2020,106:103459. DOI: 10.1016/j.cemconcomp.2019.103459

    [15]

    TINOCO M P, DE ANDRADE SILVA F. On the mechanical behavior of hybrid fiber reinforced strain hardening cementitious composites subjected to monotonic and cyclic loading[J]. Journal of Materials Research and Technology,2021,11:754-768. DOI: 10.1016/j.jmrt.2021.01.053

    [16]

    DESHPANDE A A, KUMAR D, RANADE R. Temperature effects on the bond behavior between deformed steel reinforcing bars and hybrid fiber-reinforced strain-hardening cementitious composite[J]. Construction and Building Materials,2020,233:117337. DOI: 10.1016/j.conbuildmat.2019.117337

    [17]

    BANTHIA N, GUPTA R. Hybrid fiber reinforced concrete (HyFRC): Fiber synergy in high strength matrices[J]. Materials and Structures,2004,37(10):707-716. DOI: 10.1007/BF02480516

    [18]

    SUGANRAJ K P. To study the behavior of high strength concrete beam reinforced with hybrid fiber subjected to cyclic loading[J]. International Journal for Scientific Research & Development, 2016, 4(2): 1277-1280.

    [19]

    LIU T, YANG Y, CHEN Z, et al. Optimization of fiber volume fraction to enhance reinforcing efficiency in hybrid fiber reinforced strain hardening cementitious composite[J]. Cement and Concrete Composites,2020,113:103704. DOI: 10.1016/j.cemconcomp.2020.103704

    [20] 张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系[J]. 复合材料学报, 2020, 37(5):1221-1226.

    ZHANG Cong, YU Zhihui, HAN Shicheng, et al. Compres-sive constitutive relationship of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica,2020,37(5):1221-1226(in Chinese).

    [21] 张聪, 夏超凡, 袁振, 等. 混杂纤维增强应变硬化水泥基复合材料的拉伸本构关系[J]. 复合材料学报, 2020, 37(7):1754-1762.

    ZHANG Cong, XIA Chaofan, YUAN Zhen, et al. Tension constitutive relationship of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica,2020,37(7):1754-1762(in Chinese).

    [22]

    FAN J, GOU S, DING R, et al. Experimental and analytical research on the flexural behaviour of steel-ECC composite beams under negative bending moments[J]. Engineering Structures,2020,210(5):110301-110309.

    [23]

    LU C, YU J, CHRISTOPHER K Y, et al. Tensile performance and impact resistance of strain hardening cementitious composites (SHCC) with recycled fibers[J]. Construction and Building Materials, 2018, 171: 566-576.

    [24]

    ALI M A E M, SOLIMAN A M, NEHDI M L. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading[J]. Materials & Design,2017,117:139-149.

    [25]

    WU M, CHEN Z, ZHANG C. Determining the impact behavior of concrete beams through experimental testing and meso-scale simulation: I—Drop-weight tests[J]. Engineering Fracture Mechanics,2015,135:94-112. DOI: 10.1016/j.engfracmech.2014.12.019

    [26]

    YOO D, BANTHIA N, LEE J, et al. Effect of fiber geometric property on rate dependent flexural behavior of ultra-high-performance cementitious composite[J]. Cement and Concrete Composites,2018,86:57-71. DOI: 10.1016/j.cemconcomp.2017.11.002

    [27]

    ZHANG Z, YANG F, LIU J, et al. Eco-friendly high strength, high ductility engineered cementitious composites (ECC) with substitution of fly ash by rice husk ash[J]. Cement and Concrete Research,2020,137:106200. DOI: 10.1016/j.cemconres.2020.106200

    [28]

    LIU B, YUE F, CHEN B, et al. Study on bond performance, flexural and crack extension behavior of base concrete prisms strengthen with strain-hardening cementitious composites (SHCC) using DIC technology[J]. Construction and Building Materials,2020,251:119035. DOI: 10.1016/j.conbuildmat.2020.119035

    [29]

    Japan Society of Civil Engineers. Recommendations for design and construction of high performancefiber reinforced cement composites with multiple fine cracks[S]. Tokyo: Japan Society of Civil Engineers, 2008.

    [30]

    HUANG B, WU J, YU J, et al. Seawater sea-sand engineered/strain-hardening cementitious composites (ECC/SHCC): Assessment and modeling of crack characteristics[J]. Cement and Concrete Research,2021,140:106292. DOI: 10.1016/j.cemconres.2020.106292

    [31]

    YU K, DING Y, ZHANG Y X. Size effects on tensile properties and compressive strength of engineered cementitious composites[J]. Cement and Concrete Composites,2020,113:103691. DOI: 10.1016/j.cemconcomp.2020.103691

    [32]

    AHMED S F, MAALEJ M, PARAMASIVAM P. Analytical model for tensile strain hardening and multiple cracking behavior of hybrid fiber-engineered cementitious composites[J]. Journal of Materials in Civil Engineering,2007,19(7):527-539. DOI: 10.1061/(ASCE)0899-1561(2007)19:7(527)

    [33]

    ROSSI P. A physical phenomenon which can explain the mechanical behaviour of concrete under high strain rates[J]. Materials and Structures,1991,24(144):422-424.

  • 期刊类型引用(1)

    1. 徐文媛,黄鸿坤,沈蒙莎,程永兵,陈曦,杨绍明. NaAlCl_4/ZSM-5@γ-Al_2O_3核壳复盐催化剂的制备及其歧化性能. 复合材料学报. 2022(10): 4602-4609 . 本站查看

    其他类型引用(0)

图(12)  /  表(6)
计量
  • 文章访问数:  1153
  • HTML全文浏览量:  422
  • PDF下载量:  102
  • 被引次数: 1
出版历程
  • 收稿日期:  2022-05-08
  • 修回日期:  2022-05-27
  • 录用日期:  2022-06-08
  • 网络出版日期:  2022-06-23
  • 刊出日期:  2022-10-31

目录

    /

    返回文章
    返回