钛酸钡-铌酸钾钠弛豫铁电储能陶瓷的合成和表征

Synthesis and characterization of the barium titanate-potassium sodium niobate relaxor ferroelectric energy storage ceramics

  • 摘要: 综合储能性能(充电能量密度、放电能量密度和储能效率)较低是储能陶瓷领域亟待解决的关键科学问题。同时提高陶瓷的极化差(ΔP)和击穿场强(BDS),是提高陶瓷综合储能性能的重要方法。以BaTiO3(BT)为主晶相,K0.5Na0.5NbO3(KNN)为包覆剂、助烧剂和添加剂,合成了晶粒尺寸为100 nm和200 nm的BT-KNN陶瓷。结果表明:BT-KNN陶瓷具有明显的纳米畴、弛豫行为和介电温度稳定性,且兼具高ΔP和高BDS。相比晶粒尺寸为100 nm的BT-KNN陶瓷,晶粒尺寸为200 nm的BT-KNN陶瓷具有更加优异的综合储能性能,包括较高的充电能量密度W (2.50 J·cm−3)、放电能量密度Wrec (2.08 J·cm−3)和储能效率η (83.2%)。该研究可为高综合储能性能陶瓷的合成提供一定的理论依据。

     

    Abstract: The low comprehensive energy storage performance, such as the charging energy density, discharging energy density, and energy storage efficiency, is a key scientific problem to be solved urgently in the energy storage ceramics field. Both improving the polarization difference (∆P) and breakdown field strength (BDS) of the ceramics are the key to enhance their comprehensive energy storage performance. With the main crystal phase BaTiO3 (BT), utilizing the K0.5Na0.5NbO3 (KNN) as the coating agent, sintering aid and additives, the BT-KNN ceramics with the grain sizes of 100 nm and 200 nm was synthesized, respectively. The BT-KNN ceramics has obvious nanodomains, relaxation behaviors and dielectric temperature stability, and with a high ∆P and high BDS. Compared with the BT-KNN ceramics with the grain size of 100 nm, the BT-KNN ceramics with the grain size of 200 nm has a better comprehensive energy storage properties, including high charging energy density W (2.50 J·cm−3), recoverable energy density Wrec (2.08 J·cm−3) and energy storage efficiency η (83.2%). This research may provide a theoretical basis for preparing high comprehensive energy storage performance ceramics.

     

/

返回文章
返回