2.5D机织复合材料经向和纬向振动疲劳行为对比

王雅娜, 任素娥, 张琴, 刘燕峰, 何玉怀

王雅娜, 任素娥, 张琴, 等. 2.5D机织复合材料经向和纬向振动疲劳行为对比[J]. 复合材料学报, 2023, 40(1): 109-118. DOI: 10.13801/j.cnki.fhclxb.20220223.001
引用本文: 王雅娜, 任素娥, 张琴, 等. 2.5D机织复合材料经向和纬向振动疲劳行为对比[J]. 复合材料学报, 2023, 40(1): 109-118. DOI: 10.13801/j.cnki.fhclxb.20220223.001
WANG Yana, REN Sue, ZHANG Qin, et al. Comparision of vibration fatigue behaviors of 2.5D woven composites in warp and weft directions[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 109-118. DOI: 10.13801/j.cnki.fhclxb.20220223.001
Citation: WANG Yana, REN Sue, ZHANG Qin, et al. Comparision of vibration fatigue behaviors of 2.5D woven composites in warp and weft directions[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 109-118. DOI: 10.13801/j.cnki.fhclxb.20220223.001

2.5D机织复合材料经向和纬向振动疲劳行为对比

基金项目: 航材院益材基金(KJ53200716)
详细信息
    通讯作者:

    王雅娜,博士,高级工程师,研究方向为复合材料力学性能测试与表征技术 E-mail: wangyana1988@163.com

  • 中图分类号: TB332

Comparision of vibration fatigue behaviors of 2.5D woven composites in warp and weft directions

Funds: Benefit Material Foundation of Beijing Institute of Aeronautical Materials (KJ53200716)
  • 摘要: 2.5D机织复合材料抗分层、耐冲击,在航空发动机结构上具有巨大的应用前景。本文对一种2.5D机织碳纤维增强双马树脂基复合材料经向和纬向试件,开展了不同名义应力水平下的一阶弯曲共振疲劳试验。试验结果表明:经向试件的振动疲劳性能优于纬向试件,随着应力水平的提高,经向和纬向试件的寿命明显缩短,而固有频率下降百分比增加,试件内部的损伤严重程度和损伤扩展速度都随之提高。2.5D机织复合材料经向和纬向试件在共振疲劳试验过程中的主要失效模式是纱线与基体之间脱粘造成的结构完整性丧失,从而导致试件的刚度持续下降。试件内部损伤的三维电子计算机断层扫描(Computerized tomography,CT)重构图像表明,损伤散布于试件工作段区域,应力水平越高,2.5D机织复合材料经向和纬向试件内部损伤范围越大,损伤程度越高,而且纬向试件内部损伤状态比经向试件严重。利用双对数线性寿命模型,对经向和纬向试件在不同名义应力水平下的共振疲劳试验数据进行拟合,得到2.5D机织复合材料经向和纬向试件共振疲劳应力-寿命(Stress-life,S-N)曲线的数学模型,得到的S-N曲线可用于预测2.5D机织复合材料的寿命。
    Abstract: 2.5D woven composites are resistant to delamination and impact, which have great application prospects in aeroengine structures. The first-order bending vibration fatigue tests under different stress levels were carried out for the specimens made of 2.5D woven carbon fiber reinforced bismaleimide resin matrix composites in the warp direction and weft direction, respectively. The experimental results show that the vibration fatigue performance of the warp specimens is better than that of the weft specimens. With the increase of stress levels, the lives of the specimens are shortened obviously, and the decline percentage of natural frequency increase, and the damage degree and damage propagation speed within specimens also increase. In the process of vibration fatigue test, the main failure mode of 2.5D woven composites was the loss of structural integrity caused by the debonding of the yarns and the matrixes, which leaded to the continuous decrease of the stiffness of the specimens. 3D CT reconstruction images of the internal damage of the specimens show that the damages spread throughout in the working section of the specimens. The higher the stress levels are, the greater the internal damage ranges and the higher the damage degrees are. And the internal damage state of the warp specimens is more serious than that of the weft specimens. The mathematical model of stress-life (S-N) curve of vibration fatigue of 2.5D woven composites is obtained by data fitting for vibration fatigue results under different nominal stress levels by using the log-log-linear life model, which can be used to predict the life of 2.5D woven composites.
  • 图  1   2.5D机织复合材料振动疲劳试件

    Figure  1.   Vibration fatigue specimens of 2.5D woven composite

    图  2   2.5D机织复合材料试件的构型和尺寸

    Figure  2.   Configuration and dimension of 2.5D woven composite specimens

    R—Radius of circular hole

    图  3   振动疲劳试验系统

    Figure  3.   Vibration fatigue test system

    图  4   2.5D机织复合材料拉伸应力-应变曲线

    Figure  4.   Tensile stress-strain curves of 2.5D woven composites

    图  5   2.5D机织复合材料振动疲劳试件典型的幅频曲线

    Figure  5.   Typical amplitude-frequency curve of vibration fatigue specimen made of 2.5D woven composite

    f0—Initial natural frequency

    图  6   2.5D机织复合材料试件应变-位移标定曲线

    Figure  6.   Strain-displacement calibration curves of 2.5D woven composite specimens

    图  7   2.5D机织复合材料振动疲劳试件归一化共振频率f/f0随循环次数的变化曲线

    Figure  7.   Variation curves of normalized resonance frequency f/f0 with the number of cycles for the 2.5D woven composite vibration fatigue specimens

    图  8   2.5D机织复合材料经向试件不同名义应力水平下共振疲劳试验后断口形貌

    Figure  8.   Fracture morphologies of warp-direction 2.5D woven composite specimens after vibration fatigue tests under different nominal stress levels

    图  9   2.5D机织复合材料纬向试件不同应力水平下共振疲劳试验后断口形貌

    Figure  9.   Fracture morphologies of weft-direction 2.5D woven composite specimens after vibration fatigue tests under different nominal stress levels

    图  10   2.5D机织复合材料经向试件内部损伤CT图像

    Figure  10.   CT images of internal damage of warp 2.5D woven composite specimens

    图  11   2.5D机织复合材料纬向试件内部损伤CT图像

    Figure  11.   CT images of internal damage of weft 2.5D woven composite specimens

    图  12   2.5D机织复合材料振动疲劳应力-寿命(S-N)曲线

    Figure  12.   Vibration fatigue stress-life (S-N) curves of 2.5D woven composites

    Nf—Cumulative fatigue cycle life of specimen under failure

    表  1   不同应力水平下2.5D机织复合材料经向和纬向试件共振疲劳试验参数

    Table  1   Vibration fatigue test parameters of warp and weft 2.5D woven composite specimens under different nominal stress levels

    TypeStress
    level/MPa
    Strain
    level/%
    No.Amplitude/
    mm
    f0/Hz
    Warp0.24X10.25J-12.38204
    J-22.50211
    J-32.57202
    0.26X10.27J-42.60204
    J-52.71209
    J-62.63211
    0.28X10.29J-72.82208
    J-82.69215
    J-92.75211
    0.32X10.33J-103.09215
    J-113.34212
    J-123.44207
    Weft0.18X20.20W-12.64226
    W-22.41231
    W-32.03227
    0.24X20.27W-42.80229
    W-53.08227
    W-62.68226
    0.26X20.29W-72.86215
    W-83.02220
    W-92.92224
    0.29X20.32W-103.30213
    W-113.68217
    W-123.45220
    Notes: X1, X2—Tensile strengths of the 2.5D woven composites in the warp direction and weft direction, respectively.
    下载: 导出CSV

    表  2   不同名义应力水平下2.5D机织复合材料经向和纬向试件共振疲劳测试结果

    Table  2   Vibration fatigue results of warp and weft 2.5D woven composite specimens under different nominal stress levels

    TypeStress level/ MPaNo.Decline percentage of natural frequency/%Cycles
    Warp 0.24X1 J-1 1.70 10000300
    J-2 2.59 10000200
    J-3 2.28 10002900
    0.26X1 J-4 4.73 3451410
    J-5 5.53 5839000
    J-6 5.21 6143660
    0.28X1 J-7 6.13 761800
    J-8 6.04 1402170
    J-9 5.79 1820000
    0.32X1 J-10 9.70 162823
    J-11 8.64 102829
    J-12 8.86 175556
    Weft 0.18X2 W-1 1.03 10002900
    W-2 2.06 10003000
    W-3 1.70 10003000
    0.24X2 W-4 5.37 2374300
    W-5 5.67 2272020
    W-6 5.17 4338750
    0.26X2 W-7 6.03 736122
    W-8 6.08 931322
    W-9 6.07 436673
    0.29X2 W-10 7.98 250112
    W-11 7.80 72917
    W-12 8.25 194576
    下载: 导出CSV
  • [1] 郭瑞卿, 张一帆, 吕庆涛, 等. 多层多向层联三维机织复合材料的拉伸性能[J]. 复合材料学报, 2020, 37(10):2409-2417.

    GUO Ruiqing, ZHANG Yifan, LV Qingtao, et al. Tensile properties of multilayer multiaxial interlock 3D woven composites[J]. Acta Materiae Compositae Sinica,2020,37(10):2409-2417(in Chinese).

    [2]

    MORSCHER G N, YUN H M, DICALO J A. In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions[J]. American Ceramic Society,2007,90(10):3185-3193. DOI: 10.1111/j.1551-2916.2007.01887.x

    [3]

    MORSCHER G N. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites[J]. Composites Science and Technology,2003,64(9):1311-1317.

    [4]

    HALLAL A, YOUNES R, FARDOUN F. Improved analytical model to predict the effective elastic properties of a 2.5D interlock woven fabric composite[J]. Composite Structures,2012,94(10):3009-3028. DOI: 10.1016/j.compstruct.2012.03.019

    [5] 王雅娜, 曾安民, 陈新文, 等. 2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测2.5D机织石英纤维增强树脂复合材料不同方向力学性能测试与模量预测[J]. 复合材料学报, 2019, 36(6):1364-1373.

    WANG Yana, ZENG Anmin, CHEN Xinwen, et al. Mechanical properties testing for 2.5D quartz fiber reinforced resin composites in different directions and module prediction[J]. Acta Materiae Compositae Sinica,2019,36(6):1364-1373(in Chinese).

    [6]

    LI C, ZHU J, LIU Y, et al. Mechanical properties and microstructure of 3D sinking woven quartz fiber-reinforced silica composites by silicasol-infiltration-sintering[J]. Journal of the Textile Institute Proceedings & Abstracts,2012,103(11):1189-1196.

    [7] 卢子兴, 杨振宇, 李仲平. 三维编织复合材料力学行为研究进展[J]. 复合材料学报, 2004, 21(2):1-7. DOI: 10.3321/j.issn:1000-3851.2004.02.001

    LU Zixing, YANG Zhenyu, LI Zhongping. Development of investigation into mechanical behaviour of three dimensional braided composites[J]. Acta Materiae Compositae Sinica,2004,21(2):1-7(in Chinese). DOI: 10.3321/j.issn:1000-3851.2004.02.001

    [8] 卢子兴, 周原, 冯志海, 等. 2.5D机织复合材料压缩性能实验与数值模拟[J]. 复合材料学报, 2015, 32(1):150-159.

    LU Zixing, ZHOU Yuan, FENG Zhihai, et al. Experiment and numerical simulation on compressive properties of 2.5D woven fabric composites[J]. Acta Materiae Compositae Sinica,2015,32(1):150-159(in Chinese).

    [9]

    HUANG T, WANG Y, WANG G. Review of the mechanical properties of a 3D woven composite and its applications[J]. Polymer Plastics Technology & Engineering,2018,57(8):740-756. DOI: 10.1080/03602559.2017.1344857

    [10] 李静, 孙强, 李春旺, 等. 某型航空发动机压气机叶片振动疲劳寿命研究[J]. 应用力学学报, 2011, 28(2):189-193.

    LI Jing, SUN Qiang, Li Chunwang, et al. Study on the vibration fatigue life for aero-engine compressor blade[J]. Chinese Journal of Applied Mechanics,2011,28(2):189-193(in Chinese).

    [11] 李典森, 卢子兴, 李嘉禄, 等. 三维编织复合材料振动阻尼特性的实验研究[J]. 机械强度, 2009, 31(2):211-214. DOI: 10.3321/j.issn:1001-9669.2009.02.009

    LI Diansen, LU Zixing, LI Jialu, et al. Experimental research on the vibration damping properties of 3D braided composite[J]. Journal of Mechanical Strength,2009,31(2):211-214(in Chinese). DOI: 10.3321/j.issn:1001-9669.2009.02.009

    [12] 杨强, 邵闯, 方可强. 航空发动机复合材料叶片振动疲劳特性研究[J]. 实验力学, 2014, 29(3):361-367.

    YANG Qiang, SHAO Chuang, FANG Keqiang. Vibration fatigue characteristic study of aeroengine composite blade[J]. Journal of Experimental Mechanics,2014,29(3):361-367(in Chinese).

    [13] 武海鹏, 侯涤洋, 孙立娜. 玻璃纤维, 碳纤维复合材料的阻尼性能分析[J]. 应用力学学报, 2012, 29(1):65-69.

    WU Haipeng, HOU Diyang, SUN Lina. Damping analysis of glass and carbon fiber composites[J]. Chinese Journal of Applied Mechanics,2012,29(1):65-69(in Chinese).

    [14]

    BERTHELOT J M. Damping analysis of laminated beams and plates using the Ritz method[J]. Composite structures,2006,74(2):186-201. DOI: 10.1016/j.compstruct.2005.04.031

    [15] 漆文凯, 程博, 刘磊. 复合材料层合板的振动模态试验研究[J]. 航空发动机, 2013, 39(6):53-58. DOI: 10.3969/j.issn.1672-3147.2013.06.010

    QI Wenkai, CHENG Bo, LIU Lei. Research of vibration modal experiment for composite laminates[J]. Aeroengine,2013,39(6):53-58(in Chinese). DOI: 10.3969/j.issn.1672-3147.2013.06.010

    [16]

    MAHERI M R, ADAMS R D. Finite-element prediction of modal response of damped layered composite panels[J]. Composites Science and Technology,1995,55(1):13-23. DOI: 10.1016/0266-3538(95)00074-7

    [17]

    MAGI F, MAIO D D, SEVER I. Damage initiation and structural degradation through resonance vibration: Application to composite laminates in fatigue[J]. Composites Science & Technology,2016,132:47-56. DOI: 10.1016/j.compscitech.2016.06.013

    [18]

    MAGI F, MAIO D D, SEVER I. Validation of initial crack propagation under vibration fatigue by finite element analysis[J]. International Journal of Fatigue,2017,104:183-194. DOI: 10.1016/j.ijfatigue.2017.07.003

    [19]

    MAIO D D, MAGI F, SEVER I. Damage monitoring of composite components under vibration fatigue using scanning laser doppler vibrometer[J]. Experimental Mechanics,2018,58(3):499-514. DOI: 10.1007/s11340-017-0367-y

    [20] 中华人民共和国航空工业标准委员会. 发动机叶片及材料振动疲劳实验方法: HB 5277—1984[S]. 北京: 航空工业标准出版社, 1984.

    Aviation Industry Standards Commission of the People's Republic of China. Test method for vibration fatigue of engine blades and materials: HB 5277—1984[S]. Beijing: Aviation Industry Standards Press, 1984(in Chinese).

    [21] 许巍, 杨宪峰, 郭广平, 等. 基于振动的钛合金膜盘材料疲劳性能试验研究简[J]. 实验力学, 2018, 33(2):239-244. DOI: 10.7520/1001-4888-16-282

    XU Wei, YANG Xianfeng, GUO Guangping. Experimental study of titanium alloy film disc fatigue performance based on vibration fatigue measurement[J]. Journal of Experimental Mechanics,2018,33(2):239-244(in Chinese). DOI: 10.7520/1001-4888-16-282

    [22] 杨宪峰, 许巍, 郭广平. 基于非线性振动的联轴器膜盘振动疲劳试验研究[J]. 实验力学, 2016, 31(3):763-768.

    YANG Xianfeng, XU Wei, GUO Guangping. Experimental study of vibration fatigue of coupling diaphragm based on nonlinear vibration[J]. Journal of Experimental Mechanics,2016,31(3):763-768(in Chinese).

    [23] 卢子兴, 夏彪, 杨振宇. 三维编织复合材料悬臂梁的振动特性[J]. 复合材料学报, 2010, 27(6):172-178.

    LU Zixing, XIA Biao, YANG Zhenyu. Vibration characteristics of 3D braided composites cantilever[J]. Acta Materiae Compositae Sinica,2010,27(6):172-178(in Chinese).

  • 期刊类型引用(8)

    1. 吕艾娟,孙俊涛,胡青青,米欣,肖强. EDOT-含氟聚合物涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2023(04): 408-415 . 百度学术
    2. 刘创华,胡青青,梁晓蕾,米欣,周强,朱伟东,肖强. 石墨烯/含氟聚丙烯酸酯复合材料涂层的制备及其防腐蚀性能. 浙江师范大学学报(自然科学版). 2021(03): 278-285 . 百度学术
    3. 梁晓蕾,刘创华,米欣,朱伟东,周强,肖强. SiO_2或TiO_2纳米粒子/含氟聚丙烯酸酯复合涂层的制备及其防腐蚀性能. 复合材料学报. 2020(08): 1832-1840 . 本站查看
    4. 王霞,侯丽,张代雄,周雯洁,古月. 聚苯胺在防腐方面的研究及应用现状. 表面技术. 2019(01): 208-215 . 百度学术
    5. 郝建军,李文若,林雪. (H_4N)_2S对电合成CoO/聚苯胺复合膜腐蚀性能的影响. 复合材料学报. 2019(07): 1618-1624 . 本站查看
    6. 李庆鲁,安成强,郝建军. 改性水性丙烯酸防腐涂料的研究进展. 电镀与涂饰. 2019(11): 555-560 . 百度学术
    7. 高晓辉,李玉峰,李继玉,祝晶晶. 磷化聚苯胺用量对复合涂层防腐蚀性能的影响. 精细化工. 2018(06): 934-940+948 . 百度学术
    8. 胡传波,厉英,孔亚州,丁玉石. 聚邻氯苯胺-纳米SiC/环氧树脂复合材料的制备与防腐性能. 复合材料学报. 2017(06): 1167-1176 . 本站查看

    其他类型引用(8)

图(12)  /  表(2)
计量
  • 文章访问数:  1368
  • HTML全文浏览量:  562
  • PDF下载量:  94
  • 被引次数: 16
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2021-12-30
  • 录用日期:  2022-02-10
  • 网络出版日期:  2022-02-22
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回