Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature
-
摘要: 碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是制造下一代航空发动机热结构件的关键材料,中等温度(~800℃)下,SiCf/SiC的蠕变断裂时间tu显著下降。为此,研究了平纹编织SiCf/SiC (2D-SiCf/SiC)在空气中500~1000℃的蠕变性能及损伤机制,应力水平为100~160 MPa。利用SEM、TEM和EDS分析了断口形貌、微观组织和化学成分。结果表明:2D-SiCf/SiC的tu与温度和应力水平有关。相同温度下,2D-SiCf/SiC的tu随着应力增加而变短。当温度为800℃、蠕变应力大于基体开裂应力(PLS)时,2D-SiCf/SiC发生中温脆化现象,其tu下降。2D-SiCf/SiC的中温脆化机制为基体开裂、BN界面氧化和SiO2替代BN界面导致的强界面/基体结合。2D-SiCf/SiC的tu与应力在对数坐标下呈线性关系,且在过渡应力时发生线性转变,过渡应力与PLS一致。提高PLS能够有效提高SiCf/SiC的tu。
-
关键词:
- SiCf/SiC复合材料 /
- 蠕变断裂时间 /
- BN界面 /
- 氧化 /
- 损伤机制
Abstract: Silicon carbide fiber reinforced silicon carbide composites (SiCf/SiC) have great potential to be used in the thermal structure of next-generation aero-engines. The creep rupture time tu of SiCf/SiC significantly reduced at intermediate temperatures (~800℃). Therefore, this paper investigated the creep rupture behaviors of a plain weave SiCf/SiC (2D-SiCf/SiC) at 500℃, 800℃ and 1000℃ with stresses of 100 MPa to 160 MPa in air. The morphology, microstructure and compositions of the crept specimens were observed by scanning electron microscopy, transmission electron microscopy and an energy dispersive analysis system. The results show that the tu of 2D-SiCf/SiC is closely related to the applied temperatures and stresses. At the same temperature, tu decreases with the increasing stresses at constant temperatures. When the temperature is 800℃ and the stress is greater than the proportional limit stress (PLS), embrittlement takes place for the 2D-SiCf/SiC, which means the tu and the total creep strain are much shorter than those at 500℃ and 1000℃. The embrittlement mechanisms involve matrix cracking, oxidization of BN and formation of strong fiber/matrix interphase bonding by the filling of SiO2, as well as for the 2D-SiCf/SiC at intermediate temperatures. tu vs. the applied stress follows linear relationship in logarithmic axis, whose transition appears when the applied stress equals to PLS.-
Keywords:
- SiCf/SiC composites /
- creep rupture time /
- BN interphase /
- oxidation /
- damage mechanisms
-
-
表 1 2D-SiCf/SiC的中温蠕变性能
Table 1 Creep properties of 2D-SiCf/SiC at intermediate temperature
Temperature/
℃Stress/
MPaRupture
time/hSteady-state creep
strain rate/s−1500 110 500+ 4.0×10−10 120 490 7.1×10−10 160 64 1.4×10−8 800 100 145+ 1.2×10−9 110 24 3.9×10−9 120 22 5.4×10−9 120 10 9.0×10−9 120 8 7.3×10−9 160 4 7.9×10−9 160 6 9.1×10−9 1000 100 195+ 9.1×10−10 110 119 5.3×10−9 120 33 1.7×10−8 -
[1] SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica,2004,55(3-9):409-420. DOI: 10.1016/j.actaastro.2004.05.052
[2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. DOI: 10.3321/j.issn:1000-3851.2007.02.001 ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.02.001
[3] WANG X, SONG Z, CHENG Z, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society,2020,40(14):4872-4878. DOI: 10.1016/j.jeurceramsoc.2020.01.033
[4] 李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, 15(1):45-49. DOI: 10.3321/j.issn:1005-023X.2001.01.016 LI Shibo, XU Yongdong, ZHANG Litong. Study on silicon carbide fibers reinforced ceramic matrix composites[J]. Materials Review,2001,15(1):45-49(in Chinese). DOI: 10.3321/j.issn:1005-023X.2001.01.016
[5] MORSCHER G N, CAWLEY J D. Intermediate temperature strength degradation in SiC/SiC composites[J]. Journal of the European Ceramic Society,2002,22(14-15):2777-2787. DOI: 10.1016/S0955-2219(02)00144-9
[6] 李锦涛, 王波, 杨扬, 等. 考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型[J]. 复合材料学报, 2021, 38(10):3432-3442. LI Jintao, WANG Bo, YANG Yang, et al. A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage[J]. Acta Materiae Compositae Sinica,2021,38(10):3432-3442(in Chinese).
[7] DICARLO J A. Advances in SiC/SiC composites for aero-propulsion[M]. New York: John Wiley & Sons, LTD., 2014: 217-235.
[8] BHATT R T. Creep and cyclic fatigue durability of 3D woven SiC/SiC composites with (CVI+PIP) hybrid matrix[C]//Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration. NASA:Washington D.C., 2017.
[9] NASLAIN R R. The design of the fibre-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9-10):1145-1155. DOI: 10.1016/S1359-835X(97)00128-0
[10] GALLET S L, REBILLAT F, GUETTE A, et al. Influence of a multilayered matrix on the lifetime of SiC/BN/SiC minicomposites[J]. Journal of Materials Science,2004,39(6):2089-2097. DOI: 10.1023/B:JMSC.0000017771.93067.42
[11] BHATT R T, CHOI S R, COSGRIFF L M, et al. Impact resistance of environmental barrier coated SiC/SiC composites[J]. Materials Science and Engineering: A,2008,476(1-2):8-19. DOI: 10.1016/j.msea.2007.04.067
[12] SULLIVAN R M. Time-dependent stress rupture strength of Hi-Nicalon fiber-reinforced silicon carbide composites at intermediate temperatures[J]. Journal of the Eupean Ceramic Society,2016,36(8):1885-1892. DOI: 10.1016/j.jeurceramsoc.2016.02.043
[13] BREWER D. HSR/EPM combustor materials development program[J]. Materials Science and Engineering: A,1999,261(1-2):284-291. DOI: 10.1016/S0921-5093(98)01079-X
[14] UDAYAKUMAR A, RAOLE P M, BALASUBRAMANIAN M. Synthesis of tailored 2D SiCf/SiC ceramic matrix composites with BN/C interphase through ICVI[J]. Journal of Nuclear Materials,2011,417(1-3):363-366. DOI: 10.1016/j.jnucmat.2010.12.253
[15] 王西, 王克杰, 柏辉, 等. 化学气相渗透2D-SiCf/SiC复合材料的蠕变性能及损伤机理[J]. 无机材料学报, 2020, 35(7):817-821. WANG Xi, WANG Kejie, BAI Hui, et al. Creep properties and damage mechanism of 2D-SiCf/SiC composites prepared by CVI[J]. Journal of Inorganic Materials,2020,35(7):817-821(in Chinese).
[16] RUGGLES-WRENN M B, JONES T P. Tension-compression fatigue of a SiC/SiC ceramic matrix composite at elevated temperature[J]. Journal of Engineering for Gas Turbines & Power,2012,134(9):091301. DOI: 10.1115/1.4006989
[17] MORSCHER G N, OJARD G, MILLER R, et al. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: Retained properties, damage development, and failure mechanisms[J]. Composites Science and Technology,2008,68(15):3305-3313.
[18] DUGNE O, PROUHET S, GUETTE A, et al. Interface characterization by TEM, AES and SIMS in tough SiC (ex-PCS) fibre-SiC (CVI) matrix composites with a BN interphase[J]. Journal of Materials Science,1993,28(13):3409-3422. DOI: 10.1007/BF01159815
[19] HEREDIA F E, MCNULTY J C, ZOK F W, et al. Oxidation embrittlement probe for ceramic-matrix composites[J]. Journal of the American Ceramic Society,1995,78(8):2097-2100. DOI: 10.1111/j.1151-2916.1995.tb08621.x
[20] MORSCHER G N. Tensile stress rupture of SiCf/SiCm minicomposites with carbon and boron nitride interphases at elevated temperatures in air[J]. Journal of the American Ceramic Society,1997,80(8):2029-2042.
[21] ZHOU J, CHENG L F, YE F, et al. Effects of heat treatment on mechanical and dielectric properties of 3D Si3N4f/BN/Si3N4 composites by CVI[J]. Journal of the European Ceramic Society,2020,40(15):5305-5315. DOI: 10.1016/j.jeurceramsoc.2020.06.018
[22] JACOBSON N S, MORSCHER G N, BRYANT D R, et al. High-temperature oxidation of boron nitride: II, boron nitride layers in composites[J]. Journal of the American Ceramic Society,1999,82(6):1473-1482.
[23] JACOBSON N S, MYERS D L. Active oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25.
[24] LAROCHELLE K J, MORSCHER G N. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature—Part I[J]. Applied Composite Materials,2006,13(3):147-172. DOI: 10.1007/s10443-006-9009-8
[25] MORSCHER G N, HURST J, BREWER D. Intermediate temperature stress rupture of a woven Hi-Nicalon, BN interphase, SiC matrix composite in air[J]. Journal of the American Ceramic Society,2000,83(6):1441-1449. DOI: 10.1111/j.1151-2916.2000.tb01408.x
[26] XU W B, ZOK F W, MCMEEKING R M, et al. Model of oxidation-induced fiber fracture in SiC/SiC composites[J]. Journal of the American Ceramic Society,2014,97(11):3676-3683. DOI: 10.1111/jace.13180
[27] LIU Z L, YUE J L, FU Z Y, et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500°C in air[J]. Journal of the European Ceramic Society,2020,40(8):2821-2827. DOI: 10.1016/j.jeurceramsoc.2019.04.013
[28] HUI M, CHENG L. Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J]. Carbon,2009,47(4):1034-1042. DOI: 10.1016/j.carbon.2008.12.025
[29] ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J]. Composites Science and Technology,1999,59(6):833-851. DOI: 10.1016/S0266-3538(99)00014-7
[30] MORSCHER G N, GYEKENYESI J Z, BHATT R T. Damage accumulation in 2D woven SiC/SiC ceramic matrix composites[C]//Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components. Ohio Aerospace Institute, NASA Glenn Research Center : Cleveland, 2000.
-
期刊类型引用(1)
1. 徐文媛,黄鸿坤,沈蒙莎,程永兵,陈曦,杨绍明. NaAlCl_4/ZSM-5@γ-Al_2O_3核壳复盐催化剂的制备及其歧化性能. 复合材料学报. 2022(10): 4602-4609 . 本站查看
其他类型引用(0)
-