平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制

朱思雨, 张巧君, 洪智亮, 荆开开, 管皞阳, 程赞粼, 刘永胜, 王波, 张程煜

朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制[J]. 复合材料学报, 2023, 40(1): 464-471. DOI: 10.13801/j.cnki.fhclxb.20220211.001
引用本文: 朱思雨, 张巧君, 洪智亮, 等. 平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制[J]. 复合材料学报, 2023, 40(1): 464-471. DOI: 10.13801/j.cnki.fhclxb.20220211.001
ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471. DOI: 10.13801/j.cnki.fhclxb.20220211.001
Citation: ZHU Siyu, ZHANG Qiaojun, HONG Zhiliang, et al. Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 464-471. DOI: 10.13801/j.cnki.fhclxb.20220211.001

平纹编织SiCf/SiC复合材料的中温蠕变断裂时间及损伤机制

基金项目: 国家自然科学基金(51572224;U2241239);高等学校学科创新引智计划(BP0820014);国家重点研发计划(2017YFB1103504)
详细信息
    通讯作者:

    张程煜,博士,教授,博士生导师,研究方向为材料的高温力学性能 E-mail: cyzhang@nwpu.edu.cn

  • 中图分类号: TB332

Creep rupture time and damage mechanisms of a plain woven SiCf/SiC composite at intermediate temperature

Funds: National Natural Science Foundation of China (51572224; U2241239); Programme of Introducing Talents of Discipline to Universities (BP0820014); National Key Research and Development Program of China (2017YFB1103504)
  • 摘要: 碳化硅纤维增强碳化硅复合材料(SiCf/SiC)是制造下一代航空发动机热结构件的关键材料,中等温度(~800℃)下,SiCf/SiC的蠕变断裂时间tu显著下降。为此,研究了平纹编织SiCf/SiC (2D-SiCf/SiC)在空气中500~1000℃的蠕变性能及损伤机制,应力水平为100~160 MPa。利用SEM、TEM和EDS分析了断口形貌、微观组织和化学成分。结果表明:2D-SiCf/SiC的tu与温度和应力水平有关。相同温度下,2D-SiCf/SiC的tu随着应力增加而变短。当温度为800℃、蠕变应力大于基体开裂应力(PLS)时,2D-SiCf/SiC发生中温脆化现象,其tu下降。2D-SiCf/SiC的中温脆化机制为基体开裂、BN界面氧化和SiO2替代BN界面导致的强界面/基体结合。2D-SiCf/SiC的tu与应力在对数坐标下呈线性关系,且在过渡应力时发生线性转变,过渡应力与PLS一致。提高PLS能够有效提高SiCf/SiC的tu
    Abstract: Silicon carbide fiber reinforced silicon carbide composites (SiCf/SiC) have great potential to be used in the thermal structure of next-generation aero-engines. The creep rupture time tu of SiCf/SiC significantly reduced at intermediate temperatures (~800℃). Therefore, this paper investigated the creep rupture behaviors of a plain weave SiCf/SiC (2D-SiCf/SiC) at 500℃, 800℃ and 1000℃ with stresses of 100 MPa to 160 MPa in air. The morphology, microstructure and compositions of the crept specimens were observed by scanning electron microscopy, transmission electron microscopy and an energy dispersive analysis system. The results show that the tu of 2D-SiCf/SiC is closely related to the applied temperatures and stresses. At the same temperature, tu decreases with the increasing stresses at constant temperatures. When the temperature is 800℃ and the stress is greater than the proportional limit stress (PLS), embrittlement takes place for the 2D-SiCf/SiC, which means the tu and the total creep strain are much shorter than those at 500℃ and 1000℃. The embrittlement mechanisms involve matrix cracking, oxidization of BN and formation of strong fiber/matrix interphase bonding by the filling of SiO2, as well as for the 2D-SiCf/SiC at intermediate temperatures. tu vs. the applied stress follows linear relationship in logarithmic axis, whose transition appears when the applied stress equals to PLS.
  • 图  1   平纹编织碳化硅纤维增强碳化硅复合材料(2D-SiCf/SiC)的拉伸和蠕变试样尺寸与形状

    Figure  1.   Dimensions and shape of the tensile and creep testing of plain weave silicon carbide fiber reinforced silicon carbide composites (2D-SiCf/SiC)

    R—Transitional radius

    图  2   2D-SiC/SiC的室温拉伸应力-应变曲线

    Figure  2.   Tensile stress-strain curves of 2D-SiCf/SiC at room temperatures

    图  3   2D-SiCf/SiC在120 MPa不同温度条件下的蠕变曲线

    Figure  3.   Creep curves at 120 MPa under different temperatures for 2D-SiCf/SiC composite

    图  4   2D-SiCf/SiC在800℃的应力-蠕变断裂时间曲线

    Figure  4.   Stress-creep rupture time curves of 2D-SiCf/SiC at 800℃

    CVI—Chemical vapor infiltration; MI—Melt infiltration

    图  5   2D-SiCf/SiC试样的蠕变断口SEM图像:(a) 500℃/120 MPa,蠕变断裂时间tu=490 h;(b) 800℃/120 MPa,tu=22 h;(c) 1000℃/120 MPa,tu=33 h

    Figure  5.   SEM images of fracture surface of 2D-SiCf/SiC specimen: (a) 500℃/120 MPa, creep rupture time tu=490 h; (b) 800℃/120 MPa, tu=22 h; (c) 1000℃/120 MPa, tu=33 h

    图  6   蠕变应力为120 MPa时,不同蠕变温度下2D-SiCf/SiC试样断口氧化区的SEM图像:(a) 500℃;(b) 800℃及区域孔洞放大照片;(c) 1000℃

    Figure  6.   SEM images of the oxidation zones of 2D-SiCf/SiC crept at different temperatures with stress of 120 MPa: (a) 500℃; (b) 800℃ and enlarged image of the voids; (c) 1000℃

    图  7   原始2D-SiCf/SiC的界面TEM图像

    Figure  7.   TEM image of the interface of the as-received 2D-SiCf/SiC

    图  8   2D-SiCf/SiC在800℃/120 MPa蠕变断裂后氧化区的界面TEM图像和成分分布:(a) TEM;(b) N、Si、O和C元素的EDS图像

    Figure  8.   TEM and EDS images of the interface of the embrittlement area for the 2D-SiCf/SiC crept at 800℃/120 MPa: (a) TEM image; (b) EDS images showing the distribution of element N, Si, O and C

    图  9   SiCf/SiC复合材料应力-蠕变断裂时间图

    Figure  9.   Stress-creep rupture time diagram of the SiCf/SiC composites

    表  1   2D-SiCf/SiC的中温蠕变性能

    Table  1   Creep properties of 2D-SiCf/SiC at intermediate temperature

    Temperature/
    Stress/
    MPa
    Rupture
    time/h
    Steady-state creep
    strain rate/s−1
    500 110 500+ 4.0×10−10
    120 490 7.1×10−10
    160 64 1.4×10−8
    800 100 145+ 1.2×10−9
    110 24 3.9×10−9
    120 22 5.4×10−9
    120 10 9.0×10−9
    120 8 7.3×10−9
    160 4 7.9×10−9
    160 6 9.1×10−9
    1000 100 195+ 9.1×10−10
    110 119 5.3×10−9
    120 33 1.7×10−8
    下载: 导出CSV
  • [1]

    SCHMIDT S, BEYER S, KNABE H, et al. Advanced ceramic matrix composite materials for current and future propulsion technology applications[J]. Acta Astronautica,2004,55(3-9):409-420. DOI: 10.1016/j.actaastro.2004.05.052

    [2] 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨[J]. 复合材料学报, 2007, 24(2):1-6. DOI: 10.3321/j.issn:1000-3851.2007.02.001

    ZHANG Litong, CHENG Laifei. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites[J]. Acta Materiae Compositae Sinica,2007,24(2):1-6(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.02.001

    [3]

    WANG X, SONG Z, CHENG Z, et al. Tensile creep properties and damage mechanisms of 2D-SiCf/SiC composites reinforced with low-oxygen high-carbon type SiC fiber[J]. Journal of the European Ceramic Society,2020,40(14):4872-4878. DOI: 10.1016/j.jeurceramsoc.2020.01.033

    [4] 李世波, 徐永东, 张立同. 碳化硅纤维增强陶瓷基复合材料的研究进展[J]. 材料导报, 2001, 15(1):45-49. DOI: 10.3321/j.issn:1005-023X.2001.01.016

    LI Shibo, XU Yongdong, ZHANG Litong. Study on silicon carbide fibers reinforced ceramic matrix composites[J]. Materials Review,2001,15(1):45-49(in Chinese). DOI: 10.3321/j.issn:1005-023X.2001.01.016

    [5]

    MORSCHER G N, CAWLEY J D. Intermediate temperature strength degradation in SiC/SiC composites[J]. Journal of the European Ceramic Society,2002,22(14-15):2777-2787. DOI: 10.1016/S0955-2219(02)00144-9

    [6] 李锦涛, 王波, 杨扬, 等. 考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型[J]. 复合材料学报, 2021, 38(10):3432-3442.

    LI Jintao, WANG Bo, YANG Yang, et al. A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage[J]. Acta Materiae Compositae Sinica,2021,38(10):3432-3442(in Chinese).

    [7]

    DICARLO J A. Advances in SiC/SiC composites for aero-propulsion[M]. New York: John Wiley & Sons, LTD., 2014: 217-235.

    [8]

    BHATT R T. Creep and cyclic fatigue durability of 3D woven SiC/SiC composites with (CVI+PIP) hybrid matrix[C]//Advanced Ceramic Matrix Composites: Science and Technology of Materials, Design, Applications, Performance and Integration. NASA:Washington D.C., 2017.

    [9]

    NASLAIN R R. The design of the fibre-matrix interfacial zone in ceramic matrix composites[J]. Composites Part A: Applied Science and Manufacturing,1998,29(9-10):1145-1155. DOI: 10.1016/S1359-835X(97)00128-0

    [10]

    GALLET S L, REBILLAT F, GUETTE A, et al. Influence of a multilayered matrix on the lifetime of SiC/BN/SiC minicomposites[J]. Journal of Materials Science,2004,39(6):2089-2097. DOI: 10.1023/B:JMSC.0000017771.93067.42

    [11]

    BHATT R T, CHOI S R, COSGRIFF L M, et al. Impact resistance of environmental barrier coated SiC/SiC composites[J]. Materials Science and Engineering: A,2008,476(1-2):8-19. DOI: 10.1016/j.msea.2007.04.067

    [12]

    SULLIVAN R M. Time-dependent stress rupture strength of Hi-Nicalon fiber-reinforced silicon carbide composites at intermediate temperatures[J]. Journal of the Eupean Ceramic Society,2016,36(8):1885-1892. DOI: 10.1016/j.jeurceramsoc.2016.02.043

    [13]

    BREWER D. HSR/EPM combustor materials development program[J]. Materials Science and Engineering: A,1999,261(1-2):284-291. DOI: 10.1016/S0921-5093(98)01079-X

    [14]

    UDAYAKUMAR A, RAOLE P M, BALASUBRAMANIAN M. Synthesis of tailored 2D SiCf/SiC ceramic matrix composites with BN/C interphase through ICVI[J]. Journal of Nuclear Materials,2011,417(1-3):363-366. DOI: 10.1016/j.jnucmat.2010.12.253

    [15] 王西, 王克杰, 柏辉, 等. 化学气相渗透2D-SiCf/SiC复合材料的蠕变性能及损伤机理[J]. 无机材料学报, 2020, 35(7):817-821.

    WANG Xi, WANG Kejie, BAI Hui, et al. Creep properties and damage mechanism of 2D-SiCf/SiC composites prepared by CVI[J]. Journal of Inorganic Materials,2020,35(7):817-821(in Chinese).

    [16]

    RUGGLES-WRENN M B, JONES T P. Tension-compression fatigue of a SiC/SiC ceramic matrix composite at elevated temperature[J]. Journal of Engineering for Gas Turbines & Power,2012,134(9):091301. DOI: 10.1115/1.4006989

    [17]

    MORSCHER G N, OJARD G, MILLER R, et al. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: Retained properties, damage development, and failure mechanisms[J]. Composites Science and Technology,2008,68(15):3305-3313.

    [18]

    DUGNE O, PROUHET S, GUETTE A, et al. Interface characterization by TEM, AES and SIMS in tough SiC (ex-PCS) fibre-SiC (CVI) matrix composites with a BN interphase[J]. Journal of Materials Science,1993,28(13):3409-3422. DOI: 10.1007/BF01159815

    [19]

    HEREDIA F E, MCNULTY J C, ZOK F W, et al. Oxidation embrittlement probe for ceramic-matrix composites[J]. Journal of the American Ceramic Society,1995,78(8):2097-2100. DOI: 10.1111/j.1151-2916.1995.tb08621.x

    [20]

    MORSCHER G N. Tensile stress rupture of SiCf/SiCm minicomposites with carbon and boron nitride interphases at elevated temperatures in air[J]. Journal of the American Ceramic Society,1997,80(8):2029-2042.

    [21]

    ZHOU J, CHENG L F, YE F, et al. Effects of heat treatment on mechanical and dielectric properties of 3D Si3N4f/BN/Si3N4 composites by CVI[J]. Journal of the European Ceramic Society,2020,40(15):5305-5315. DOI: 10.1016/j.jeurceramsoc.2020.06.018

    [22]

    JACOBSON N S, MORSCHER G N, BRYANT D R, et al. High-temperature oxidation of boron nitride: II, boron nitride layers in composites[J]. Journal of the American Ceramic Society,1999,82(6):1473-1482.

    [23]

    JACOBSON N S, MYERS D L. Active oxidation of SiC[J]. Oxidation of Metals,2011,75(1):1-25.

    [24]

    LAROCHELLE K J, MORSCHER G N. Tensile stress rupture behavior of a woven ceramic matrix composite in humid environments at intermediate temperature—Part I[J]. Applied Composite Materials,2006,13(3):147-172. DOI: 10.1007/s10443-006-9009-8

    [25]

    MORSCHER G N, HURST J, BREWER D. Intermediate temperature stress rupture of a woven Hi-Nicalon, BN interphase, SiC matrix composite in air[J]. Journal of the American Ceramic Society,2000,83(6):1441-1449. DOI: 10.1111/j.1151-2916.2000.tb01408.x

    [26]

    XU W B, ZOK F W, MCMEEKING R M, et al. Model of oxidation-induced fiber fracture in SiC/SiC composites[J]. Journal of the American Ceramic Society,2014,97(11):3676-3683. DOI: 10.1111/jace.13180

    [27]

    LIU Z L, YUE J L, FU Z Y, et al. Microstructure and mechanical performance of SiCf/BN/SiC mini-composites oxidized at elevated temperature from ambient temperature to 1500°C in air[J]. Journal of the European Ceramic Society,2020,40(8):2821-2827. DOI: 10.1016/j.jeurceramsoc.2019.04.013

    [28]

    HUI M, CHENG L. Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber preforms[J]. Carbon,2009,47(4):1034-1042. DOI: 10.1016/j.carbon.2008.12.025

    [29]

    ZHU S, MIZUNO M, KAGAWA Y, et al. Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: A review[J]. Composites Science and Technology,1999,59(6):833-851. DOI: 10.1016/S0266-3538(99)00014-7

    [30]

    MORSCHER G N, GYEKENYESI J Z, BHATT R T. Damage accumulation in 2D woven SiC/SiC ceramic matrix composites[C]//Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components. Ohio Aerospace Institute, NASA Glenn Research Center : Cleveland, 2000.

  • 期刊类型引用(1)

    1. 徐文媛,黄鸿坤,沈蒙莎,程永兵,陈曦,杨绍明. NaAlCl_4/ZSM-5@γ-Al_2O_3核壳复盐催化剂的制备及其歧化性能. 复合材料学报. 2022(10): 4602-4609 . 本站查看

    其他类型引用(0)

图(9)  /  表(1)
计量
  • 文章访问数:  1817
  • HTML全文浏览量:  627
  • PDF下载量:  121
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-11-21
  • 修回日期:  2022-01-09
  • 录用日期:  2022-01-19
  • 网络出版日期:  2022-02-13
  • 刊出日期:  2023-01-14

目录

    /

    返回文章
    返回