超临界CO2流体辅助合成Si-Fe-Fe3O4-C复合材料及储锂性能

Supercritical CO2 fluid assisted synthesis of Si-Fe-Fe3O4-C composites and lithium storage performance

  • 摘要: 硅碳负极是未来锂离子电池材料发展的重点方向之一,本文针对传统球磨法制备硅碳负极复合不均匀、界面融合差等问题,提出了一种超临界二氧化碳(scCO2)流体介质球磨合成Si-Fe-Fe3O4-C复合材料的新方法。研究发现,纳米硅和中间相碳微球(MCMB)在scCO2介质球磨混合过程中,CO2和Fe反应先得到均匀分散的Si-FeCO3-C前驱体,然后FeCO3原位高温固相分解得到Si-Fe-Fe3O4-C复合材料。同时,在scCO2流体渗透下,MCMB剥离成石墨片,并与纳米硅和Fe-Fe3O4实现较好的界面融合,Fe-Fe3O4的引入显著提升了硅碳负极的储锂容量、循环稳定性和倍率性能,Si-Fe-Fe3O4-C复合材料在0.2 A·g−1下100次循环后可逆容量保持在1065 mA·h·g−1。本方法利用超临界流体渗透性好、扩散能力强等特点,合成工艺简便,容易工业化实施,具有商业化开发潜力。

     

    Abstract: Silicon-carbon anode is an important issue for the development of lithium-ion battery materials. Aiming at the problems of uneven combination and poor interfacial contact of silicon-carbon anode prepared by traditional ball milling, this paper proposes a new strategy to synthesize Si-Fe-Fe3O4-C composite by ball milling in supercritical carbon dioxide (scCO2) fluid medium. It is found that during the process of ball milling mixture of nano-silicon and mesophase carbon microspheres (MCMB) in the scCO2 medium, CO2 and Fe reacts firstly to form a uniformly dispersed Si-FeCO3-C precursor, and then in situ high temperature decomposition of FeCO3 solid phase results in final Si-Fe-Fe3O4-C product. Under the infiltration of scCO2 fluid, MCMB microspheres exfoliate into graphite flakes, and achieve ideal combination with nano-silicon and Fe-Fe3O4. The introduction of Fe-Fe3O4 in the composite has significantly improved the lithium storage capacity, cycle stability and rate performance of silicon-carbon anode, the synthesized Si-Fe-Fe3O4-C composite material maintains a reversible capacity of 1065 mA·h·g−1 after 100 cycles at 0.2 A·g−1. The method shows the merits of facile operation procedure, easy industrial production and potential commercial application basing on the supercritical fluid permeability and strong diffusion ability.

     

/

返回文章
返回