Preparation of hierarchical CoO@NiMo-O(P) composites and its supercapacitive performance
-
摘要: 超级电容器具有充放电快、比电容高、循环稳定性好等优点,已成为一种重要的储能器件,其性能主要取决于电极材料的电化学性能。具有高比表面积和环境友好性的复合纳米材料,是超级电容器的理想电极材料。本文首先采用水热法在碳布基底上制备了氢氧化钴纳米线,并以纳米线为基体,在其上二次水热合成镍钼氢氧化物纳米片,再经过低温退火和磷化,最终获得了CoO@NiMo-O(P)分级复合纳米材料。利用SEM、TEM及XPS等技术对样品形貌、结构和元素化合价进行了表征和分析。电化学测试结果表明:该分级复合纳米材料具有良好的电容性能,在1 A/g的电流密度下比电容可达1304.55 F/g,且在10 A/g的电流密度下经过1000次充放电后,比电容保持率高达87%,表现出了良好的循环特性。Abstract: Supercapacitor, which has a series of advantages such as fast charge and discharge, high specific capacitance as well as good cycle stability, has become an important energy storage device, whose performance mainly depends on the electrochemical properties of electrode materials. Composite nanomaterials with high specific surface area and environmental friendliness are ideal electrode materials for supercapacitors. In this paper, nickel-molybdenum nanosheets were grown on the surface of cobalt hydroxide nanowires on the carbon cloth substrate by a two-step hydrothermal method to achieve CoO@NiMo-O(P) composite nanomaterials after low temperature annealing and phosphorlation. The morphology, structure and chemical valence of the samples were characterized and analyzed by SEM, TEM and XPS. The results of electrochemical tests show that the hierarchical CoO@NiMo-O(P) composites has good capacitance performance. The specific capacitance reaches 1304.55 F/g at a low current density of 1 A/g, and a capacity retention of 87% is exhibited after 1000 charge and discharge at a current density of 10 A/g, showing good cycle stability.
-
-
图 2 生长在碳布上的Co(OH)2纳米线的低倍 (a) 和高倍 (b) SEM图像;(c) Co(OH)2纳米线EDS谱图;((d)、(e)) 在Co(OH)2纳米线上生长NiMo-O(OH)纳米片后的SEM图像;(f) 相应的EDS谱图;((g)、(h)) CoO@NiMoO4纳米复合材料的SEM图像;(i) CoO@NiMo-O(P)复合材料的EDS谱图;((j)、(k)) CoO@NiMo-O(P)的SEM图像;(l) CoO@NiMo-O(P)的EDS谱图
Figure 2. Low (a) and high (b) magnification SEM images of the Co(OH)2 nanowires grown on carbon cloth; (c) EDS spectrum of the Co(OH)2 nanowires; ((d), (e)) SEM images of the NiMo-O(OH) nanoflakes grown on the Co(OH)2 nanowires; (f) EDS spectrum of the nanoflakes; ((g), (h)) SEM images of the CoO@NiMoO4 composites; (i) EDS spectrum of the composites of CoO@NiMo-O(P); ((j), (k)) SEM images of CoO@NiMo-O(P); (l) Corresponding EDS spectrum of CoO@NiMo-O(P)
图 6 (a) CoO@NiMo-O(P)、CoO@NiMoO4、NiMo-O(P)、Co-O(P)在30 mV/s扫速下的循环伏安特性;(b) 上述四种材料在1 A/g电流密度下的恒电流充放电性能;(c) CoO@NiMo-O(P) 不同扫速下的循环伏安特性;(d) CoO@NiMo-O(P)在不同电流密度下的恒电流充放电特性;(e) CoO@NiMo-O(P)、NiMo-O(P)和Co-O(P)在10 A/g电流密度下充放电1000次的稳定性;(f) CoO@NiMo-O(P)复合材料稳定性测试前后的阻抗对比图(插图为CoO@NiMo-O(P)与CoO@NiMoO4的阻抗对比图)
Figure 6. (a) CV curves of CoO@NiMo-O(P), CoO@NiMoO4, NiMo-O(P), Co-O(P) at a scan rate of 30 mV/s; (b) GCD curves of the above fore materials at a current density of 1 A/g; (c) CV curves of CoO@NiMo-O(P) composite at different scanning rates; (d) GCD curves of CoO@NiMo-O(P) at different current densities; (e) Cycling performance of CoO@NiMo-O(P), NiMo-O(P) and Co-O(P) electrode at a current density of 10 A/g; (f) Nyquist plots of CoO@NiMo-O(P) before and after 1000 cycles (Inset: Nyquist plots of CoO@NiMoO4 and CoO@NiMo-O(P))
表 1 不同超级电容器电极材料充放电性能对比
Table 1 Comparison of GCD with different electrode materials for supercapacitor
-
[1] 苏小辉, 谢启星, 何青青, 等. α-MnO2@氮掺杂TiO2/碳纸多孔结构构筑高性能超级电容器[J]. 复合材料学报, 2022, 39(4):1628-1637. SU X H, XIE Q X, HE Q Q, et al. Building a high-perfor-mance supercapacitor with α-MnO2@nitrided TiO2/carbon fiber paper porous structure[J]. Acta Materiae Compositae Sinica,2022,39(4):1628-1637(in Chinese).
[2] 韦会鸽, 李桂星, 万同, 等. 聚乳酸基聚苯胺柔性可降解超级电容器的制备及性能[J]. 复合材料学报, 2022, 39(1):193-202. WEI H G, LI G X, WAN T, et al. Polyaniline growing on polylactic acid substrate towards flexible and biodegradable supercapacitors[J]. Acta Materiae Compositae Sinica,2022,39(1):193-202(in Chinese).
[3] 胡彬, 张红平, 姜丽丽. 碳化氧化石墨烯/壳聚糖超级电容器电极复合材料的制备及表征[J]. 复合材料学报, 2018, 35(3):661-667. HU B, ZHANG H P, JIANG L L. Preparation of carbonized graphene oxide/chitosan composites and their application as electrode composites for supercapacitors[J]. Acta Materiae Compositae Sinica,2018,35(3):661-667(in Chinese).
[4] 董永光, 李生娟, 罗意, 等. 高性能NiCoP基超级电容器电化学性能[J]. 无机化学学报, 2021, 37(6): 1062-1070. DONG Y G, LI S J, LUO Y, et al. Electrochemical perfor-mance of nicop-based supercapacitor[J]. Chinese Journal of Ingorganic Chemistry, 2021, 37(6): 1062-1070(in Chinese).
[5] YAO P Y, LI Z, ZHU J C, et al. Controllable synthesis of NiCo-LDH/Co(OH)2@PPY composite via electrodeposition at high deposition voltages for high-performance supercapacitors[J]. Journal of Alloys and Compounds,2021,875:160042. DOI: 10.1016/j.jallcom.2021.160042
[6] ACHARYA J W, PARK M, KIM B J, et al. Leaf-like integrated hierarchical NiCo2O4 nanosheets electrodes for high-rate asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2021,884:161165. DOI: 10.1016/j.jallcom.2021.161165
[7] ZHOU Q F, GONG Y, TAO K Y. Calcination/phosphorization of dual Ni/Co-MOF into NiCoP/C nanohybrid with enhanced electrochemical property for high energy density asymmetric supercapacitor[J]. Electrochimica Acta, 2019, 320: 134582
[8] HE S X, GUO F J, YANG Q, et al. Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties[J]. Small,2021,17(21):2100353.
[9] LI Z, MA K J, GUO F J, et al. Construction of homologous Ni2P/NiCoP heterostructure for enhanced pseudocapaci-tive properties[J]. Materials Letters,2021,288:129319. DOI: 10.1016/j.matlet.2021.129319
[10] XU F, XIA Q, DU G P, et al. Coral-like Ni2P@C derived from metal-organic frameworks with superior electrochemical performance for hybrid supercapacitors[J]. Electrochimica Acta,2021,380:138200.
[11] WANG F M, CHEN J W, QI X P, et al. Increased nucleation sites in nickel foam for the synthesis of MoP@Ni3P/NF nanosheets for bifunctional water splitting[J]. Applied Surface Science,2019,481:1403-1411.
[12] YANG Y Y, ZHOU Y, HU Z A, et al. 3D thin-wall cell structure nickel-cobalt-molybdenum ternary phosphides on carbon cloth as high-performance electrodes for asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2019,772:683-692. DOI: 10.1016/j.jallcom.2018.09.134
[13] XU Z Y, DU C C, YANG H K, et al. NiCoP@CoS tree-like core-shell nanoarrays on nickel foam as battery-type electrodes for supercapacitors[J]. Chemical Engineering Journal,2020,421(12):127871.
[14] LIU Y, MA Z L, XIN N, et al. High-performance supercapacitor based on highly active P-doped one-dimension/two-dimension hierarchical NiCo2O4/NiMoO4 for efficient energy storage[J]. Journal of Colloid and Interface Science,2021,601:793-802. DOI: 10.1016/j.jcis.2021.05.095
[15] HAN R X, GUAN L X, ZHANG S, et al. Boosted cycling stability of CoP nano-needles based hybrid supercapacitor with high energy density upon surface phosphorization[J]. Electrochimica Acta,2020,368:137690.
[16] XIANG F F, ZHOU X Y, YUE X Q, et al. An oxygen-deficient cobalt-manganese oxide nanowire doped with P designed for high performance asymmetric supercapacitor[J]. Electrochimica Acta,2021,379:138178. DOI: 10.1016/j.electacta.2021.138178
[17] ZHU Z N, TIAN W, LV X B, et al. P-doped cobalt carbonate hydroxide@NiMoO4 double-shelled hierarchical nanoarrays anchored on nickel foam as a bi-functional electrode for energy storage and conversion[J]. Journal of Colloid and Interface Science,2020,587:855-863.
[18] LIU J N, DENG X Y, ZHU S, et al. Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor[J]. Electrochimica Acta,2020,368:4686.
[19] YUAN Z, WANG H Y, SHEN J L, et al. Hierarchical Cu2S@NiCo-LDH double-shelled nanotube arrays with enhanced electrochemical performance for hybrid supercapacitors[J]. Journal of Materials Chemistry A,2020,8(43):22163-22174.
[20] LV X, HUANG W X, SHI Q W, et al. Synthesis of amorphous NiCozVxOy nanosphere as a positive electrode materials via a facile route for asymmetric supercapacitors[J]. Journal of Power Sources,2021,492:229623. DOI: 10.1016/j.jpowsour.2021.229623
[21] HUANG C H, HU Y Z, JIANG S P, et al. Amorphous nickel-based hydroxides with different cation substitutions for advanced hybrid supercapacitors[J]. Electrochimica Acta,2019,325:134936. DOI: 10.1016/j.electacta.2019.134936
[22] LIU C L, ZHANG G, YU L, et al. Oxygen doping to optimize atomic hydrogen binding energy on NiCoP for highly efficient hydrogen evolution[J]. Small,2018,14(22):1800421. DOI: 10.1002/smll.201800421
[23] LEI X Y, GE S C, YANG T Y, et al. Ni-Mo-S@Ni-P composite materials as binder-free electrodes for aqueous asymmetric supercapacitors with enhanced performance[J]. Jour-nal of Power Sources, 2020, 477: 229022.
[24] LU Y, YU H, CHEN C, et al. Sulfide@hydroxide core-shell nanostructure via a facile heating-electrodeposition method for enhanced electrochemical and photoelectrochemical water oxidation[J]. Journal of Energy Chemistry,2020,58:431-440.
[25] HU Z Y, MIAO Y D, XUE X L, et al. CuO@NiCoFe-S core-shell nanorod arrays based on Cu foam for high perfor-mance energy storage[J]. Journal of Colloid and Interface Science,2021,599:34-45. DOI: 10.1016/j.jcis.2021.04.085
[26] LI J X, ZHAO J W, QIN L R, et al. Hierarchical Co(OH)2@NiMoS4 nanocomposite on carbon cloth as electrode for high-performance asymmetric supercapacitors[J]. RSC Advances,2020,10(38):22606-22615. DOI: 10.1039/D0RA03253K
[27] MIAO C X, ZHOU C L, WANG H E, et al. Hollow Co-Mo-Se nanosheet arrays derived from metal-organic framework for high-performance supercapacitors[J]. Journal of Power Sources,2021,490:229532. DOI: 10.1016/j.jpowsour.2021.229532
[28] LEI N, MA P P, YU B, et al. Anion-intercalated supercapacitor electrode based on perovskite-type SrB0.875Nb0.125O3(B=Mn, Co)[J]. Chemical Engineering Journal,2020,421:127790.
[29] MIAO W K, HAN Q H, ZHANG H M, et al. Uniform phosphorus doped CoWO4@NiWO4 nanocomposites for asymmetric supercapacitors[J]. Journal of Alloys and Compounds,2021,877:160301. DOI: 10.1016/j.jallcom.2021.160301
[30] FANG X T, WU P C, FU J W. Facile construction of N, P and O ternary self-doped hollow carbon microspheres with hierarchical porous structure for environmental applications[J]. Microporous and Mesoporous Materials,2021,321:111135. DOI: 10.1016/j.micromeso.2021.111135
[31] ZHENG G F, HUANG Z C, LIU Z. Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for high-performance supercapacitors[J]. Journal of Power Sources,2021,482:228935. DOI: 10.1016/j.jpowsour.2020.228935
[32] ZHAO F, ZHENG D H, LIU Y, et al. Flexible Co(OH)2/NiOxHy@Ni hybrid electrodes for high energy density supercapacitors[J]. Chemical Engineering Journal,2021,415(7411):128871.
[33] LI P F, ZHANG M, YIN H F, et al. Hierarchical mesoporous NiCoP hollow nanocubes as efficient and stable electrodes for high-performance hybrid supercapacitor[J]. Applied Surface Science,2021,536:147751. DOI: 10.1016/j.apsusc.2020.147751
[34] BAASANJAV E, BANDYOPADHYAY P, SAEED G, et al. Dual-ligand modulation approach for improving supercapaci-tive performance of hierarchical zinc-nickel-iron phosphide nanosheet-based electrode[J]. Journal of Industrial and Engineering Chemistry,2021,99:299-308. DOI: 10.1016/j.jiec.2021.04.034
[35] WAN L, WANG Y M, ZHANG Y, et al. Designing FeCoP@NiCoP heterostructured nanosheets with superior electrochemical performance for hybrid supercapacitors[J]. Journal of Power Sources,2021,506:230096. DOI: 10.1016/j.jpowsour.2021.230096
[36] LIU Z Q, LIU Y, ZHONG Y X, et al. Facile construction of MgCo2O4@CoFe layered double hydroxide core-shell nanocomposites on nickel foam for high-performance asymmetric supercapacitors[J]. Journal of Power Sources,2020,484:229288.
[37] WANG X W, LI W X, WANG X E, et al. Electrochemical pro-perties of NiCoO2 synthesized by hydrothermal method[J]. RSC Advances,2017,7:50420-50424. DOI: 10.1039/C7RA09288A
[38] WANG Y, CHEN L J, LIN S M, et al. Bimetallic Ni0.4Mn1.6P derived from nickel functionalized a new Mn metal-orga-nic framework for supercapacitor[J]. Materials Today Communications,2021,26:102057.
[39] 汪明, 蔡园园, 杨艺, 等. Ni2P@CoP3核壳纳米球的制备、表征及其用于超级电容器性能[J]. 无机化学学报, 2021, 37(9):1633-1641. WANG M, CAI Y Y, YANG Y, et al. Synthesis and characterization of Ni2P@CoP3 core-shell nanospheres for supercapacitors[J]. Chinese Journal of Ingorganic Chemistry,2021,37(9):1633-1641(in Chinese).
[40] GU J L, SUN L, ZHANG Y X, et al. MOF-derived Ni-doped CoP@C grown on CNTs for high-performance supercapacitors[J]. Chemical Engineering Journal,2019,385:123454.
[41] ZHANG X J, HOU S J, DING Z B, et al. Carbon wrapped CoP hollow spheres for high performance hybrid supercapacitor[J]. Journal of Alloys and Compounds,2019,822(13):153578.
[42] ZHOU K, ZHOU W J, YANG L J, et al. Ultrahigh-perfor-mance pseudocapacitor electrodes based on transition metal phosphide nanosheets array via phosphorization: A general and effective approach[J]. Advanced Functional Materials,2015,25(48):7530-7538. DOI: 10.1002/adfm.201503662
-
期刊类型引用(8)
1. 丁能鑫,侯夫庆,杨会康,张春辉. 石英纤维的表面改性及分散特性研究. 中国造纸. 2023(06): 56-63 . 百度学术
2. 杨娜,苏韬,黄锴荻,王文俊. 通过与苯乙烯共聚改善含硅芳炔树脂及其复合材料性能. 复合材料学报. 2023(09): 5002-5010 . 本站查看
3. 束长朋,王茂源,周权,宋宁,倪礼忠. 苯并噁嗪-氨基稀释剂改性硅炔杂化树脂及其复合材料性能. 复合材料学报. 2020(11): 2718-2725 . 本站查看
4. 成滨,扈艳红,邓诗峰,杜磊,周燕,杨藤,崔方旭. 一种含腈基的硅烷偶联剂改性石英纤维/含硅芳炔复合材料. 复合材料学报. 2019(03): 545-554 . 本站查看
5. 王卓,王欢,任鹏刚,王明存. 硅氧烷杂化苯并恶嗪及其耐高温复合材料. 热固性树脂. 2019(02): 13-20 . 百度学术
6. 杨海荟,崔丽平. 新型含醚酰亚胺端炔硅烷偶联剂的合成研究. 广东化工. 2019(18): 69-71+78 . 百度学术
7. 宋来福,杨彩云. 复合材料界面理论及石英纤维表面处理与改性方法研究进展. 纺织科学与工程学报. 2018(01): 171-176 . 百度学术
8. 杨海荟,扈艳红,杜磊,顾渊博,张芳芳. 新型硅烷偶联剂对石英纤维/含硅芳炔复合材料界面增强增韧改性. 玻璃钢/复合材料. 2016(08): 13-21 . 百度学术
其他类型引用(4)
-