Processing math: 1%

钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验

冯俊杰, 尹冠生, 刘柱, 梁建红, 张云杰, 牛志强, 王鹏博

冯俊杰, 尹冠生, 刘柱, 等. 钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验[J]. 复合材料学报, 2022, 39(11): 5386-5402. DOI: 10.13801/j.cnki.fhclxb.20211221.002
引用本文: 冯俊杰, 尹冠生, 刘柱, 等. 钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验[J]. 复合材料学报, 2022, 39(11): 5386-5402. DOI: 10.13801/j.cnki.fhclxb.20211221.002
FENG Junjie, YIN Guansheng, LIU Zhu, et al. Experiment on dynamic mechanical properties of steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5386-5402. DOI: 10.13801/j.cnki.fhclxb.20211221.002
Citation: FENG Junjie, YIN Guansheng, LIU Zhu, et al. Experiment on dynamic mechanical properties of steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete under uniaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(11): 5386-5402. DOI: 10.13801/j.cnki.fhclxb.20211221.002

钢-塑钢混杂纤维再生混凝土单轴压缩动态力学性能试验

基金项目: 长安大学博士研究生创新能力培养资助项目(300203211121);陕西省交通运输厅交通科研项目(21-67K);长安大学相变蓄能建筑材料创新开放实验室项目(2018CXSY06);河南省科技厅科技攻关项目(182102311091);郑州科技学院自然科学项目(2017-XYZK-002)
详细信息
    通讯作者:

    尹冠生,博士,教授,博士生导师,研究方向为混凝土结构  E-mail: yings@chd.edu.cn

  • 中图分类号: TV431

Experiment on dynamic mechanical properties of steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete under uniaxial compression

  • 摘要: 为探究钢-塑钢混杂纤维再生混凝土的压缩动态力学性能,设计了A、B和C 3个系列混杂纤维再生混凝土包含3种再生粗骨料取代率和5种体积分数1.5vol%的钢纤维和塑钢混掺纤维组合,采用了4种加载应变率。试验表明:随应变率增加,混杂纤维再生混凝土峰值应力、弹性模量和压缩韧性增大,峰值应变减小。相较于基准组,在相同应变率下3个系列中的含纤维组峰值应力最大增幅分别为23%、16%和16%;峰值应变最大增幅分别为19%、12%和13%;弹性模量最大增幅分别为15%、14%和35%;压缩韧性最大增幅分别为46%、32%和37%。在试验应变率范围内,再生粗骨料显著提高峰值应力、弹性模量和压缩韧性的应变率敏感性,对峰值应变的应变率敏感性并无明显影响;掺入纤维降低混凝土峰值应变和弹性模量的应变率敏感性,提高普通混凝土峰值应力和压缩韧性的应变率敏感性,降低再生混凝土峰值应力和压缩韧性的应变率敏感性。提出的动态损伤本构模型考虑了纤维增强系数、再生粗骨料取代率和应变率,计算结果与试验结果吻合较好。
    Abstract: The dynamic compressive behavior of hooked-end steel (HES) and macro-polypropylene (MPP) hybrid fibers reinforced recycled aggregate concrete (HyF/RAC) was studied. Three series (A, B and C) of HyF/RAC specimens were designed, which include three different recycled coarse aggregates (RCA) replacement ratios and five combinations of hybrid fibers at the total volume fraction of 1.5vol%, and four different strain rates were conducted. The results show that with the increase of strain rate, the peak stress, elastic modulus and compressive toughness increase, while the peak strain decreases. Compared with control groups in three series under the same strain rate, the largest increases of peak stress for specimens with fibers are 23%, 16% and 16%, respectively. The largest increases of peak strain are 19%, 12% and 13%, respectively. The largest increases of elastics modulus are 15%, 14% and 35%, respectively. The largest increases of compressive toughness are 46%, 32% and 37%, respectively. In the strain rate range, the strain rate sensitivity of peak stress, elastic modulus and compressive toughness increase with the RCA, and the RCA replacement ratio does not affect the strain rate sensitivity of peak strain. The strain rate sensitivity of peak strain and elastics modulus decrease with the addition of fiber. The addition of fibers enhances the strain rate sensitivity of peak stress and compressive toughness for natural aggregate concrete (NAC). While the strain rate sensitivity of peak stress and compressive toughness decrease for recycled aggregate concrete (RAC). The dynamic constitutive damage model was proposed considering the reinforcing index of fibers, RCA replacement ratio and strain rates. And all the models agree well with the experimental curves.
  • 超高性能混凝土(Ultra-high-performance con-crete,UHPC)是一种新型水泥基复合材料,具有超高强度、超高韧性、超高耐久性,被广泛应用于桥梁工程、建筑工程、军事防护工程等领域[13]。与普通混凝土相比,UHPC与钢筋具有更优异的黏结性能[4-5],从而可以解决实际工程中搭接区段钢筋搭接强度不足的问题,有效缩短钢筋的搭接长度,延缓搭接区裂缝的发展。因此,UHPC被广泛应用于桥面板连接[6-8]、钢筋搭接缺陷加固[9]和预制混凝土构件连接[10]等。

    钢筋与混凝土之间的黏结是保证钢筋混凝土构件充分发挥作用的关键,中心拉拔试验、对拉搭接试验和梁式试验是目前研究钢筋与UHPC黏结性能的主要方法。通过中心拉拔试验发现[11-17],钢筋锚固长度、钢纤维掺量、保护层厚度是影响其黏结强度的主要参数。随着黏结长度的增加,钢筋应力分布越不均匀,钢筋与UHPC的平均黏结强度逐渐减小;随着混凝土保护层厚度的增加,钢筋与UHPC的黏结性能显著提高,但钢筋直径以及钢纤维掺量对其的影响尚未有统一的结论。

    中心拉拔试验因其操作简便、易于实现而被广泛的应用于黏结试验中,但中心拉拔试验存在“拱效应”,测得的黏结强度往往偏高,因此许多学者采用对拉搭接试验对钢筋与UHPC的黏结性能进行研究。Lagier等[18]通过对拉拔出试验研究了钢纤维掺量对搭接接头黏结强度的影响,研究表明:相比于普通混凝土,钢纤维增强UHPC可以有效缩短钢筋的搭接长度;纤维体积分数为4vol%时,直径为25 mm的钢筋在12d的搭接长度(d为钢筋直径)下即可达到屈服,且劈裂裂纹得到了有效控制。方志等[19]通过39个对拉搭接试验,研究了纵筋搭接长度、搭接钢筋间距、配箍率和活性粉末混凝土(Reactive powder concrete,RPC)强度对RPC与钢筋之间的黏结性能的影响,研究表明:搭接长度是影响其破坏模式的主要因素;随着搭接长度的增加会导致搭接强度稍有降低,而RPC强度、配箍率和钢筋净距的增加会导致搭接强度的提高。马福栋等[20]设计了21组对拉搭接试验和3组直接拔出锚固试验,研究了搭接长度、纤维掺量、配箍率对变形钢筋和UHPC黏结性能的影响,结论与文献[19]基本一致,并且建立了钢筋/UHPC锚固和搭接长度的简化算法。

    中心拉拔试验和对拉搭接试验均未考虑实际梁构件中弯曲应力的影响,梁式搭接试验是最接近实际受力的试验方法,课题组前期工作[20]发现,对拉搭接试验与中心拉拔试验得出的黏结强度比值为0.66~0.69,说明中心拉拔试验会高估钢筋与UHPC的黏结强度,而对拉搭接试验未考虑实际梁构件中弯曲应力的影响。为此,有学者通过整浇UHPC梁式搭接试验来研究钢筋与UHPC的搭接黏结性能[2124],研究表明:UHPC可以有效减小钢筋搭接长度;钢纤维掺量、钢筋搭接长度是影响搭接黏结强度的重要因素。本文通过8根局部后浇UHPC连接的搭接梁和1根局部后浇C80混凝土连接的搭接梁,研究钢筋搭接长度、钢纤维掺量和机械锚固措施对搭接梁中高强钢筋与UHPC黏结性能的影响,并与其他两种试验方法进行对比,研究弯矩作用对受拉钢筋黏结强度的影响,为后浇UHPC搭接梁应用于装配式建筑提供依据。

    试验共设计了8根UHPC搭接梁和1根C80混凝土搭接梁,试验变参为钢筋搭接长度(3d、8d、12d)、钢纤维掺量(2vol%、3vol%)、机械锚固措施(90°弯钩、锚固板、单面贴焊、两面贴焊)。梁截面尺寸为200 mm×400 mm,梁纵筋采用HRB500级钢筋,直径为20 mm,箍筋及架立筋采用HPB300级钢筋,其直径均为8 mm,为保证搭接梁后浇界面新旧混凝土良好的黏结性能,设置了6 mm的粗糙面。

    梁构件的尺寸和配筋图见图1图2,锚固措施见图3,试件的设计参数及钢筋应力计算结果详见表1,根据文献[17-19, 23-24],本文取搭接长度3d为主变参,保证搭接梁发生黏结破坏。

    图  1  梁大样图及俯视图
    Figure  1.  Sample and top view of beam
    1—C40 precast concrete sections; 2—A8@100; 3—Rough surface concave and convex depth 6 mm; 4—Post-cast section
    图  2  梁截面配筋图及键槽示意图
    Figure  2.  Beam cross-section reinforcement diagram and keyway schematics
    图  3  机械锚固措施图
    Figure  3.  Mechanical anchorage measure diagram
    d—Steel bar diameter
    表  1  梁式搭接试验试件参数设计及钢筋应力计算结果
    Table  1.  Parameter design of beam lap test specimen and results of reinforcement stress calculation
    Number Type L Lap form Vf/vol% Peak load/kN fs/MPa Yield or not
    B1
    B2
    C80
    UHPC
    3d
    3d
    Straight rebar lap
    Straight rebar lap
    2
    2
    23.5
    95.2

    187
    Not
    Not
    B3 UHPC 8d Straight rebar lap 2 207.8 449 Not
    B4 UHPC 12d Straight rebar lap 2 231.1 494 Not
    B5 UHPC 3d Straight rebar lap 3 145.3 302 Not
    B6 UHPC 3d Hook treatment 2 297.4 560 Yield
    B7 UHPC 3d Anchor plate 2 124.1 257 Not
    B8 UHPC 3d One side weld 2 124.3 257 Not
    B9 UHPC 3d Two side weld 2 188.0 403 Not
    Notes: Type—Type of post-cast concrete in lap section; UHPC—Ultra-high-performance concrete; L—Lap length (Lap form-different mechanical anchorage measures); Vf—Fibre volume fraction; fs—Calculated tensile strength of rebar.
    下载: 导出CSV 
    | 显示表格

    试件的制作主要分为两步:(1)先浇筑预制梁部分,采用C40混凝土浇筑而成,用隔板与泡沫胶将搭接区和预制梁分隔开,预留出后浇部分;(2)待普通混凝土部分硬化后,取掉搭接区的隔板,并用高压水枪将泡沫胶清洗干净,将两侧键槽(图4(b))处的普通混凝土面进行凿毛处理,清洗干净后安装侧模,将制备好的UHPC在此区段进行浇筑,待收面抹平之后覆盖保鲜膜防止产生干缩裂缝。为保证其足够的黏结强度,试件搭接区养护28天之后进行加载。

    图  4  试件制作图
    Figure  4.  Specimen fabrication diagram

    试验采用的UHPC主要由水泥、粉煤灰、硅灰、石英砂和水组成。水泥选用P·O 52.5级硅酸盐水泥;粉煤灰为I级粉煤灰;考虑纤维随机分布的影响,采用级配石英砂,粒径范围为0.08~3.25 mm;硅灰选用无定型超细灰白色球状粉末;减水剂采用某公司的聚羧酸高效减水剂;使用端勾型镀铜钢纤维,长度为13 mm,直径是0.22 mm,长径比为60,抗拉强度大于2850 MPa。测得新拌UHPC的坍落度大于220 mm,扩展度约为560 mm。

    采用边长为100 mm的立方体试块和100 mm×100 mm×300 mm的棱柱体试块分别测量UHPC 的立方体抗压强度和棱柱体抗压强度。采用“哑铃型”试块测试UHPC的单轴抗拉强度,厚度为130 mm,试件尺寸及加载装置见图5,UHPC的力学性能见表2,钢筋的力学性能见表3

    图  5  哑铃型试件示意图 (单位:mm)
    Figure  5.  Schematic diagram of dumbbell type specimen (Unit: mm)

    本次试验在冠腾自动化技术有限公司制造的YAS-1000型微机控制电液伺服压力试验机上进行,加载方式为三分点静力加载。采用位移控制加载,加载速率为0.2 mm/min,当荷载降至极限荷载的85%时,停止加载。试验加载装置如图6所示。

    表  2  超高性能混凝土(UHPC)材料性能
    Table  2.  Material properties of UHPC
    Vf/vol% fcu/MPa fc/MPa ft/MPa
    2 123.3 113.2 6.22
    3 135.6 122.7 7.01
    Notes: fcu—Cubic compressive strength; fc—Prismatic compressive strength; ft—Tensile strength.
    下载: 导出CSV 
    | 显示表格
    表  3  钢筋力学性能
    Table  3.  Mechanical properties of reinforcement
    Strength grade Diameter/
    mm
    Yield strength/
    MPa
    Ultimate strength/
    MPa
    HPB300 8 357 529
    HRB500 20 560 715
    下载: 导出CSV 
    | 显示表格
    图  6  试验加载装置及测点布置图
    Figure  6.  Layout of test loading device and measuring point
    1—Displacement meter; 2—Concrete strain gauge; 3—Pressure sensor; 4—Reaction beam; 5—Hydraulic jack; 6—Distribution beam; 7—Test beam

    为测量梁受力过程中,梁跨中混凝土应变是否满足平截面假定,在梁跨中等间距布置5个混凝土应变片,间距为80 mm,最上端应变片距顶面为40 mm;为了得到搭接梁在加载过程中的挠度变化情况,在跨中、两加载点下方和两侧支座上方处各布置1个位移传感器,共5个,具体布置如图6所示。

    在搭接段每根受拉纵筋上均布置应变片,考虑到搭接段长度为3d (60 mm)时,搭接长度过小,因此将应变片布置在预制混凝土梁靠近键槽处,共布置了4个测点,应变片布置示意图如图7所示。

    图  7  钢筋测点布置
    Figure  7.  Layout of reinforcement measuring points

    图8(a)所示,加载初期试件处于弹性工作阶段,当加载至19 kN时,后浇界面开始出现明显的裂缝,继续加载,后浇界面裂缝变宽,其他未出现明显裂缝;当加载至24 kN时,达到峰值荷载;随着加载位移增大,后浇界面裂缝宽度逐渐增大,钢筋与后浇混凝土的黏结性能不断劣化,梁式试件承载力显著下降,试件后浇区发生黏结破坏。

    图  8  UHPC-高强钢筋梁式搭接试件破坏示意图
    Figure  8.  Schematic diagram of UHPC-high strength rebar beam lap test specimen failure

    (1)不同钢筋搭接长度(B2、B3、B4)

    图8(b)所示,试件B2 (3d)加载至41 kN时,梁底后浇接缝处出现第一条裂缝;继续加载,混凝土梁段受拉区亦出现弯曲裂缝,后浇接缝处裂缝向上延伸;加载至95 kN (峰值荷载)时,试件裂缝数量不再增加;继续加载,后浇界面处裂缝变宽,钢筋与UHPC黏结强度退化并发生滑移,受拉纵筋没有屈服,跨中挠度增加,试件破坏。

    图8(c)图8(d)所示,试件B3 (8d)和B4 (12d)的破坏过程基本相似,均经历了后浇区接缝开裂、混凝土梁段开裂、剪跨区出现斜裂缝、钢筋与UHPC黏结退化和滑移。破坏模式的差异主要体现在混凝土梁段的弯曲裂缝数量,裂缝数量与梁的受弯承载力呈正相关,受UHPC搭接区域提供的总黏结力控制。3个试件中受拉纵筋均未屈服,原因主要是搭接长度的不足导致钢筋的抗拔能力较低,钢筋还未发挥作用可能已经产生了滑移,而由于搭接钢筋间净距过小,使钢筋没有被UHPC充分包裹,导致钢筋与UHPC的有效黏结面积减小,从而未能充分发挥UHPC的高黏结特性,因此内部裂缝还未扩展至UHPC面层表面,试件就已经发生了破坏。

    (2)不同钢纤维掺量(B2、B5)

    图8(e)所示,试件B5 (3vol%)加载至54 kN时,右加载点附近处出现第一条裂缝,随后,后浇接缝处才出现竖向裂缝;随着荷载继续增加,表现出与试件B2 (2vol%)相似的破坏特征;加载至145 kN (峰值荷载)时,试件破坏,受拉纵筋没有屈服,在梁端可以观察到一定数量的弯曲裂缝,但与B2试件相比并未明显增多。钢纤维掺量的增加,可以提高后浇界面与梁端普通混凝土的黏结性能,因此第一条裂缝出现在了加载点处附近,相比于钢筋搭接长度,钢纤维掺量对钢筋与UHPC黏结性能的影响有限,试件表面弯曲裂缝数量没有明显增加。

    (3)不同锚固措施(B6~B9)

    图8(f)~8(i)所示,试件B6、B7、B8和B9分别采用90°弯钩、锚固板、单面贴焊和双面贴焊4种不同的机械锚固措施处理。

    试件B6加载至37 kN时,梁底部后浇界面处首先出现对称竖向裂缝;继续加载,混凝土梁段不断出现新的弯曲裂缝,裂缝逐渐延伸变宽;加载至264 kN时,受拉钢筋屈服,梁段裂缝宽度明显增大;加载至297 kN (峰值荷载)时,试件裂缝不再增加,继续加载,最后受压区混凝土被压碎,试件表现出典型的适筋梁破坏特征。试件B6搭接区所提供的黏结力由平直段、弯钩段和竖直段三部分提供,有效黏结面积明显增大,总黏结力显著高于试件B7、B8和B9,因此受拉纵筋能够发生屈服,表现出明显不同于B7、B8和B9试件的破坏模式。

    试件B7、B8、B9表现出相似的破坏过程,与试件B2 (直筋搭接)相比,锚具的设置主要增强了钢筋与UHPC后期的黏结强度储备,只有在试件发生较大变形的情况下才能发挥作用,因此在前期破坏过程上并没有显著的区别,梁段弯曲裂缝的数量也没有明显增加。但锚具会对周围UHPC产生一定的压力作用,在最后破坏时,可以观察到搭接段UHPC面层处有黏结裂缝产生。同时,锚具的设置增强了钢筋与UHPC的黏结强度,因此记录到的钢筋应变更大,但此时受拉纵筋仍没有屈服。试件B7、B8、B9破坏模式的主要差异体现在双面贴焊进一步减小了试件B9混凝土的保护层厚度,因此在最终呈现的破坏模式上,可以在搭接区面层上观察到更多的黏结裂缝。

    综上,试件B1的破坏源于后浇区钢筋和混凝土的黏结破坏;除试件B6因受压区混凝土压碎导致破坏以外,其余试件的破坏均由UHPC浇筑区的黏结退化引起。

    搭接梁的荷载-挠度曲线如图9所示,各个搭接梁的峰值荷载及钢筋屈服情况见表1

    图  9  UHPC-高强钢筋梁式搭接试件荷载-挠度曲线
    Figure  9.  Load-deflection curves of UHPC-high strength rebar beam lap test specimen

    (1)试件B2的峰值荷载是B1的4.05倍,可认为搭接长度为3d时UHPC与钢筋的黏结强度较混凝土提高了3倍;峰值荷载后,C80混凝土搭接区混凝土保护层发生劈裂破坏后残余黏结强度约为峰值黏结强度的40%,而UHPC搭接区表现出更高的残余黏结强度比(约68%),其原因是UHPC中的钢纤维桥连作用延缓了保护层的劈裂。

    (2)试件B2、B3和B4的荷载-挠度曲线见图9(b)。加载初期试件处于弹性阶段,曲线基本重合,试件开裂后刚度下降,搭接长度越大黏结强度退化越缓慢,刚度下降越缓慢。由表1可知,与试件B2相比,试件B3和B4的峰值荷载分别提高了118.3%和142.8%,但单位黏结长度提供的黏结力下降,与常规中心拉拔和对拉搭接试验结果吻合。

    (3)由图9(c)可见,试件未开裂前均处于弹性阶段,B5试件开裂后刚度并无明显下降。由表1可得,当钢纤维掺量从2vol%增长到3vol%,试件的峰值荷载提高了52.6%。随着钢纤维掺量的增加,提高了UHPC的抗拉强度和抗裂性能,乱向分布的钢纤维可以抑制内部微裂纹的发展,缓冲裂缝端部的应力集中,从而提高了钢筋与UHPC的黏结性能,试件的峰值荷载更高,但明显小于钢筋搭接长度的增加对搭接梁力学性能的影响。

    (4)由表1可知,与试件B2相比,采用不同机械锚固措施的试件B6~B9,峰值荷载分别提高了212.4%、97.5%、30.4%、30.6%。荷载-挠度曲线见图9(d),试件B6~B9在开裂前均处于弹性阶段,开裂后的荷载-挠度曲线表现出明显的不同。试件B6在达到峰值荷载前钢筋已经屈服,并且峰值荷载显著高于其他试件,由于焊点的失效,B8、B9试件在达到峰值荷载后,黏结强度出现了明显的退化,荷载突然下降,采用锚固板措施的B7试件,在达到峰值荷载后,仍然有着足够的黏结强度储备,并未出现黏结强度的迅速退化。

    图10所示为搭接梁在较小的搭接长度(3d)和不同的机械锚固措施下跨中混凝土的应变变化情况,开裂之前,应变沿截面高度分布基本成线性增长,开裂之后,略有波动,但仍呈现线性增长的趋势,因此搭接梁跨中混凝土应变情况基本符合平截面假定。

    图  10  UHPC-高强钢筋梁式搭接试件跨中混凝土应变分析
    Figure  10.  Strain analysis of plane section of UHPC-high strength rebar beam lap test specimen
    F—Load (less than or equal to ultimate load); Fu—Ultimate load of the specimen

    图11所示为搭接梁荷载-跨中钢筋应变曲线,在这里选取了3组峰值荷载较高的试件进行分析,B2为对比试件。可以看到,峰值荷载最高的B6搭接梁,钢筋应变达到了屈服应变,符合前述搭接梁的破坏模式,而峰值荷载低于B6的其余搭接梁,钢筋均未屈服。

    图  11  UHPC-高强钢筋梁式搭接试件搭接段钢筋应变分析
    Figure  11.  Strain analysis of steel bar in lap section of UHPC-high strength rebar beam lap test specimen

    本文根据搭接梁达到峰值荷载时轴力与弯矩的平衡条件计算出搭接梁中钢筋的最大拉应力[23, 25],基本假定如下:

    (1)搭接梁跨中UHPC正截面平均应变按照线性规律分布,即截面应变符合平截面假定;

    (2)受压区UHPC取三角形应力分布,即处于弹性工作阶段;

    (3) UHPC与受拉钢筋在受拉区共同承担拉应力,UHPC的应力-应变曲线采用理想弹塑性模型,UHPC初裂以后其拉应力保持不变[25]

    根据截面的应力以及应变分布图12,可以得到两个平衡方程:

    CUHPC+Cs=TUHPC+Ts (1)
    M=CUHPC(23xc)+Cs(xcd)+TUHPC(m2)+Ts(h0xc) (2)
    m=xcεtεu (3)

    式中: {T_{{\text{UHPC}}}} 为受拉区UHPC的合拉力; {T_{\text{s}}} 为受拉钢筋的合力; {C_{{\text{UHPC}}}} 为受压区UHPC的合压力; {C_{\text{s}}} 为受压钢筋的合力; M 为搭接梁所受的外力矩; {x_{\text{c}}} 为梁截面的受压区高度; {d'} 为受压钢筋合力作用点到梁外边缘的距离; {\varepsilon _{\text{t}}} 为UHPC的计算拉应变; {\varepsilon _{\text{u}}} 为极限压缩纤维处UHPC的压应变; h 为搭接梁截面高度; {h_{\text{0}}} 为搭接梁截面有效高度,即受拉钢筋合力作用点到梁外边缘的距离;m为受拉钢筋合力点到中和轴的距离,即UHPC的有效受拉区高度。

    图  12  钢筋应力计算示意图
    Figure  12.  Schematic diagram of reinforcement stress calculation
    h —Beam height; b—Beam width; {h_{\text{0}}} —Effective height of beam; {d'} —Distance from the point of action of the combined forces of the compression reinforcement to the outer edge of the beam; {A_{\text{s}}} —Cross-sectional area of tensile reinforcement; {A_{\text{s}}^{\prime}} —Cross-sectional area of compression reinforcement; {x_{\text{c}}} —Height of compression zone of beam section; m —The depth of the extreme UHPC tensile fiber below the neutral axis; {\varepsilon _{\text{t}}} —Calculated tensile strain of UHPC; {\varepsilon _{\text{u}}} —Compressive strain of UHPC at the extreme compression fiber; {\varepsilon _{\text{s}}} —Actual strain in tensile reinforcement; {\varepsilon _{\text{s}}^{\prime}} —Actual strain in compression reinforcement; {f_{\text{y}}} —Yield stress of tensile reinforcement; {f_{\text{y}}^{\prime}} —Yield stress of compression reinforcement; {f_{\text{t}}} —Measured uniaxial tensile strength of dumbbell specimens; {\sigma _{\text{c}}} —Compressive stress of UHPC at the extreme compression fiber; {T_{\text{s}}} —Combined force of tensile reinforcement; {T_{{\text{UHPC}}}} —Combined force of UHPC in the tension zone; {C_{\text{s}}} —Combined force of compression reinforcement; {C_{{\text{UHPC}}}} —Combined pressure of UHPC in the pressure zone

    受压区UHPC的合力 {C_{{\text{UHPC}}}} 可按下式进行计算:

    {C_{{\text{UHPC}}}} = \frac{1}{2}{x_{\text{c}}}{\varepsilon _{\text{u}}}{E_{\text{c}}}b (4)

    式中: b 为搭接梁截面宽度; {E_{\text{c}}} 为UHPC弹性模量,采用文献[26]中所拟合出来的 {f_{{\text{cu}}}} {E_{\text{c}}} 之间的关系式进行计算:

    E_{\text{c}}=\frac{10^5}{1.76+73.34/f_{\text{cu}}} (5)

    受拉区UHPC的合力 {T_{{\text{UHPC}}}} 可按下式进行计算:

    {T_{{\text{UHPC}}}} = {f_{\text{t}}}bm (6)

    式中, {f_{\text{t}}} 为哑铃型试件实测出的单轴抗拉强度。

    受压钢筋的合力 {C_{\text{s}}} 可用下式进行计算:

    C_{\mathrm{s}}=\left\{\begin{array}{l} A_{\mathrm{s}}^{\prime} f_{\mathrm{y}}^{\prime}, f_{\mathrm{s}}^{\prime} \geqslant f_{\mathrm{y}}^{\prime} \\ A_{\mathrm{s}}^{\prime} f_{\mathrm{s}}^{\prime}=A_{\mathrm{s}}^{\prime} \varepsilon_{\mathrm{s}}^{\prime} {E_{\text{s}}^{\prime}}=A_{\mathrm{s}}^{\prime} \varepsilon_{\mathrm{u}}\left(\frac{x_{\mathrm{c}}-d^{\prime}}{x_{\mathrm{c}}}\right) E_{\mathrm{s}}^{\prime}, f_{\mathrm{s}}^{\prime} \leqslant f_{\mathrm{y}}^{\prime} \end{array}\right. (7)

    式中: {A_{\text{s}}^{\prime}} 为受压钢筋的截面面积; {f_{\text{y}}^{\prime}} 为受压钢筋的屈服应力; {f_{\text{s}}^{\prime}} 为受压钢筋的实际应力; {\varepsilon _{\text{s}}^{\prime}} 为受压钢筋的实际应变; {E_{\text{s}}^{\prime}} 为受压钢筋的弹性模量,取210 GPa。

    受拉钢筋的合力 {T_{\text{s}}} 可用下式进行计算:

    {T_{\text{s}}} = \left\{ \begin{gathered} {A_{\text{s}}}{f_{\text{y}}},{f_{\text{s}}} \geqslant {f_{\text{y}}} \\ {A_{\text{s}}}{f_{\text{s}}} = {A_{\text{s}}}{\varepsilon _{\text{s}}}{E_{\text{s}}} = {A_{\text{s}}}{\varepsilon _{\text{u}}}\left( {\frac{{{h_0} - {x_{\text{c}}}}}{{{x_{\text{c}}}}}} \right){E_{\text{s}}},{f_{\text{s}}} \leqslant {f_{\text{y}}} \\ \end{gathered} \right. (8)

    式中: {A_{\text{s}}} 为受拉钢筋截面面积; {f_{\text{y}}} 为受拉钢筋的屈服应力; {f_{\text{s}}} 为受拉钢筋的实际应力; {\varepsilon _{\text{s}}} 为受拉钢筋的实际应变; {E_{\text{s}}} 为受拉钢筋的弹性模量,取200 GPa。

    表1为搭接梁达到峰值荷载时的钢筋应力计算结果,从表1图9可以看出,仅有B6试件钢筋发生了屈服,表明在3d的搭接长度下,同时采用90°弯钩这一机械锚固措施,可以充分发挥出高强钢筋的作用。

    搭接梁中钢筋与UHPC的平均黏结强度 {\tau _{\text{u}}} 可以用搭接梁达到峰值荷载时的钢筋应力计算[9, 23]

    {\tau _{\text{u}}} = \frac{{{A_{\text{b}}}{f_{\text{s}}}}}{{{\text{π}} {d_{\text{b}}}{l_{{\text{sp}}}}}} (9)

    式中: {A_{\text{b}}} 为钢筋的横截面积; {d_{\text{b}}} 为受拉钢筋的直径; {f_{\text{s}}} 为峰值荷载时钢筋的最大拉应力; {l_{{\text{sp}}}} 为钢筋的搭接长度。

    课题组前期进行了5组中心拉拔试验和9组对拉搭接试验研究[27],钢筋与UHPC的黏结强度采用下式进行计算:

    {\tau _{\text{u}}} = \frac{F}{{{\text{π}} {d_{\text{b}}}{l_{{\text{sp}}}}}} (10)

    式中: {\tau _{\text{u}}} 为对拉搭接试验的黏结强度; F 为试验的峰值荷载。

    表4可得,在混凝土保护层厚度和钢筋直径相同的情况下,对拉搭接试验得出的黏结强度与中心拉拔试验比值平均值为0.69;梁式搭接试验与对拉搭接试验得出的黏结强度比值平均值为0.84。

    表  4  UHPC-高强钢筋梁式试验对比
    Table  4.  Test comparison of UHPC-high strength rebar beam lap test
    Number Type L Vf/vol% Lap form Center pull-out test Brace lap test Beam lap test τu2/τu1 τu3/τu2
    τu1/MPa Failure mode τu2/MPa Failure mode τu3/MPa Failure mode
    B1
    B2
    C80
    UHPC
    3d
    3d
    0
    2
    Straight rebar lap
    Straight rebar lap
    19.2
    35.6
    SPF
    SPF
    12.1
    23.1
    SPF BOF 0.63
    SPF 15.6 BOF 0.65 0.68
    B3 UHPC 8d 2 Straight rebar lap 20.8 SPF 16.2 SPF 14.0 BOF 0.78 0.86
    B4 UHPC 12d 2 Straight rebar lap 14.4 RF 12.3 RF 10.3 BOF 0.85 0.84
    B5 UHPC 3d 3 Straight rebar lap 49.7 SPF 27.6 SPF 25.2 BOF 0.56 0.91
    B6 UHPC 3d 2 Hook treatment 50.7 RF 46.7 BEF 0.92
    B7 UHPC 3d 2 Anchor plate 25.2 SPF 21.4 BOF 0.85
    B8 UHPC 3d 2 One side weld 27.1 SPF 21.4 BOF 0.79
    B9 UHPC 3d 2 Two side weld 28.4 SPF 33.6 BOF 1.18
    Notes: All the above specimens are made of HRB500 grade rebar, diameter is 20 mm, the concrete protective layer is 1.5d; τu1—Bond strength obtained by center poll-out test; τu2—Bond strength obtained by brace lap test; τu3—Bond strength obtained by beam lap test; SPF and RF represent the splitting pull-out failure and steel bar rupture failure respectively; BOF and BEF represent the bonding failure of steel bars and the bending failure of lap beams respectively.
    下载: 导出CSV 
    | 显示表格

    中心拉拔试验无法准确模拟钢筋搭接时真实的受力状况,在钢筋拉拔过程中UHPC受压,受UHPC内部“拱作用”产生挤压力的影响,使钢筋拉拔过程中的机械咬合力和摩阻力增大,同时加载端UHPC还受到加载装置中钢板的端部约束,故中心拉拔试件所得到的黏结强度高于对拉搭接试验;课题组前期[27]进行的4根钢筋对拉搭接试验,消除了中心拉拔试验中拱作用和端部约束作用的影响,使UHPC在钢筋拉拔过程中受到拉应力的作用,是一种改进的试验方法,但以上两种试验方法均无法反映出实际构件中弯曲应力对钢筋与UHPC黏结强度的削弱作用,因此得出的黏结强度仍高于贴近实际受力情况的梁式搭接试验。

    对于两面贴焊试件,出现了梁式搭接试验得出的黏结强度高于对拉搭接试验,可能是由于对拉搭接试验加载过程中,钢筋出现偏心的影响,从而削弱了钢筋与UHPC的黏结强度,受限于试验数据较少,无法得出具体的原因,因此取平均值时排除B9试件,后续通过进一步试验分析其原因。

    图13可见,随着黏结长度增大,3种试验方法得到的黏结强度差异越小,原因主要是黏结长度越大,中心拉拔试件受“压力拱”效应影响越小,荷载偏心和界面弯曲应力的不利影响也变小;3种试验方法得到的黏结强度均随黏结长度的增大而减小,由于随着搭接长度的增加,黏结应力的分布越不均匀,采用直筋搭接的方式,越靠近搭接钢筋末端,黏结应力越小,搭接长度的增加导致黏结应力较小的区域增加,从而钢筋的平均黏结强度相应降低。

    图  13  钢筋搭接长度对黏结强度的影响
    Figure  13.  Influence of lap length on bond strength

    图14可以看出,随着钢纤维掺量的增大,3种试验方法下得到的黏结强度均随之增大,这是由于随着钢纤维掺量的增加,提高了UHPC的抗拉强度和抗裂性能,乱向分布的钢纤维可以抑制内部微裂纹的发展,缓冲裂缝端部的应力集中;但随着钢纤维掺量的增大,中心拉拔试验与其他种试验方法所得到的黏结强度差异较大,这是因为单根钢筋的拔出试验中,钢筋被UHPC充分包裹,所以这种作用效应更能充分发挥,而搭接钢筋则由于钢筋间净距较小,提升并不明显。

    图  14  钢纤维掺量对黏结强度的影响
    Figure  14.  Infulence of steel fiber content on bonding strength

    设置了机械锚固措施以后,钢筋与UHPC的黏结强度主要由两部分组成,即直锚段和锚头段两部分,因此在相同的搭接长度下,采取机械锚固措施处理后的的试件,钢筋与UHPC具有更高的黏结强度。由表4图15可以看出,对拉搭接试验和梁式搭接试验具有相同的规律性,以梁式搭接试验为例,采用90°弯钩处理后的试件B6黏结强度提升最为明显,提升了199.4%,原因是采用弯钩处理后的试件,弯钩处的UHPC受到局部挤压作用,得益于UHPC较高的抗压强度,钢筋与UHPC的黏结强度显著提高。

    采用锚固板、单面贴焊、两面贴焊处理后的试件B7、B8和B9,黏结强度提高幅度均小于90°弯钩处理后的试件,分别提高了37.2%、115.4%。从对拉搭接试验中试件的破坏模式来看,在3d的搭接长度下,上述3个试件均发生劈裂破坏,劈裂裂缝的产生削弱了钢筋与UHPC的黏结强度,发生劈裂破坏的原因一方面是由于锚板和短筋的存在会减小混凝土保护层厚度,另一方面是由于钢筋搭接长度过小,锚板和短钢筋与周围UHPC的局部挤压作用在受力前期就十分明显,虽然试件B6也会出现局部挤压作用,但弯钩处钩形面面积较大,并不会在前期就产生显著的应力集中现象,导致前期黏结刚度不足, 而发生劈裂破坏。在梁式搭接试验中,B6试件并未在搭接区段观察到劈裂裂缝,但B7、B8和B9试件均在搭接区段观察到了少量的劈裂裂缝。

    图  15  机械锚固措施对黏结强度的影响
    Figure  15.  Influence of mechanical anchoring measures on bond strength

    结合式(9)和对拉搭接试验拟合得出的钢筋搭接黏结强度计算公式(11)[27],并考虑弯矩对黏结强度的影响,可以得到梁式搭接试验中高强钢筋与UHPC的临界搭接长度计算公式(13),计算结果见表5

    表  5  UHPC-高强钢筋搭接长度计算
    Table  5.  Lap length calculation of UHPC-high strength rebar
    Lap
    length
    Vf/vol% Mechanical anchoring measures
    3 Straight
    rebar lap
    Hook treatment Anchor plate One side weld
    lsy 9.8d 11.6d 6.7d 9.4d 8.6d
    lsu 13.7d 16.0d 10.9d 13.6d 12.6d
    Notes: lsy—Minimum lap length of steel bar yield; lsu—Minimum lap length of steel bar rupture.
    下载: 导出CSV 
    | 显示表格
    \tau_{\mathrm{ul}}=\left\{\begin{array}{l} \left(0.39+1.69 \dfrac{d}{l_{\mathrm{s}}}\right)\left(3.22+0.72 \dfrac{c}{d}\right) f_{\mathrm{t}} \\ \phi\left(0.39+1.69 \dfrac{d}{l_{\mathrm{s}}}\right)\left(3.22+0.72 \dfrac{c}{d}\right) f_{\mathrm{t}}+\psi \dfrac{f_{\mathrm{t}} d}{{\text{π}} l_{\mathrm{s}}} \end{array}\right. (11)
    {\tau _{\text{u}}} = k{\tau _{{\text{ul}}}} (12)

    式中: {\tau _{\text{u}}} 为梁式搭接试验的黏结强度;ls为钢筋搭接长度; {\tau _{{\text{ul}}}} 为对拉搭接试验的黏结强度;c为UHPC保护层厚度; k=\tau_{\text{u3}}/\tau_{\text{u2}} ,取平均值0.84; \phi 为带端部锚固措施钢筋的黏结应力折减系数,带弯钩和锚固板的 \phi 为1.05、贴焊短筋的 \phi 取为1.10;锚固板系数 \psi 取8,弯钩系数 \psi 取23、贴焊短筋 \psi 取9。

    {\dfrac{l_{\text{s}}}{d}=\left\{\begin{gathered}\dfrac{f}{4kf_{\text{t}}\left(1.26+0.28c/d\right)}-4.33 \\ \dfrac{f}{4kf_{\text{t}}\phi\left(1.26+0.28c/d\right)}-\dfrac{\psi}{\text{π}\phi\left(1.26+0.28c/d\right)}-4.33 \\ \end{gathered}\right.} (13)

    式中: {l_{\text{s}}}/d 为相对搭接长度, f 取钢筋的屈服强度 {f_{\text{y}}} ,可以得到临界屈服搭接长度 {l_{{\text{sy}}}} f 取钢筋的极限强度 {f_{\text{u}}} ,可以得到临界极限搭接长度 {l_{{\text{su}}}}

    由式(13)可得,本文采用HRB500级钢筋所计算出直筋的临界和极限搭接长度分别为11.6d和16d,详细计算结果见表5

    通过9根梁式搭接试验,研究了钢筋搭接长度、钢纤维掺量、机械锚固措施对搭接梁中高强钢筋与超高性能混凝土(UHPC)黏结性能的影响,所得到的结论如下:

    (1)与搭接区后浇C80混凝土相比,高强钢筋与UHPC具有更优异的黏结性能,可以更好发挥出高强钢筋的性能,提升搭接梁的受力性能;

    (2)随着钢筋搭接长度的增加,搭接梁的峰值荷载逐渐提高,但搭接长度越长,钢筋与UHPC的黏结应力分布越不均匀,平均黏结强度逐渐降低;

    (3)钢纤维掺量从2vol%增加到3vol%,UHPC的增韧、阻裂效果增强,搭接梁的黏结强度以及峰值荷载相应提高;

    (4)采用机械锚固措施处理后的搭接梁具有更高的黏结强度和峰值荷载,其中采用90°弯钩处理的搭接梁,峰值荷载和黏结强度最高,最后破坏时钢筋屈服,因此在3d的搭接长度下(d为钢筋直径),同时采用钢筋弯钩处理可以充分发挥高强钢筋的作用,以用于实际工程中;

    (5)根据搭接梁在峰值荷载下轴力与弯矩的平衡条件,计算出受拉钢筋的最大应力,进一步得出钢筋与UHPC的平均黏结强度,并与中心拉拔和对拉搭接试验结果进行对比,为梁式搭接试件中钢筋与UHPC的黏结强度计算提供准确的理论依据。

  • 图  1   压缩试验加载装置(单位:mm)

    Figure  1.   Loading setup for compressive test (Unit: mm)

    图  2   不同应变率下HyF/RAC(C0和C3组)试件破坏形态

    Figure  2.   Failure modes of C0 and C3 specimens for HyF/RAC at different strain rates

    图  3   不同应变率下HyF/RAC(C0和C3组)试件应力-应变曲线

    Figure  3.   Stress-strain curve of C0 and C3 specimens for HyF/RAC at different strain rates

    图  4   不同应变率下HyF/RAC峰值应力\sigma^{\rm{p}}

    Figure  4.   Peak stress \sigma^{\rm{p}} of HyF/RAC at different strain rates

    \dot \varepsilon —Strain rate; {\dot \varepsilon _{\text{s}}} —Quasi-static strain rate

    图  5   不同应变率下HyF/RAC峰值应力动态增长因子F^{{\sigma}^{\rm{p}}}_{\rm{D}}

    Figure  5.   Dynamic increase factor F^{{\sigma}^{\rm{p}}}_{\rm{D}} of peak stress of HyF/RAC at different strain rates

    图  6   不同应变率下HyF/RAC峰值应变\varepsilon^{\rm{p}}

    Figure  6.   Peak strain \varepsilon^{\rm{p}} of HyF/RAC at different strain rates

    图  7   不同应变率下HyF/RAC峰值应变动态增长因子F^{{\varepsilon}^{\rm{p}}}_{\rm{D}}

    Figure  7.   Dynamic increase factor F^{{\varepsilon}^{\rm{p}}}_{\rm{D}} of peak strain of HyF/RAC at different strain rates

    图  8   不同应变率下HyF/RAC弹性模量 E

    Figure  8.   Elastic modulus E of HyF/RAC at different strain rates

    图  9   不同应变率下HyF/RAC弹性模量动态增长因子F^E_{\rm{D}}

    Figure  9.   Dynamic increase factor F^E_{\rm{D}} of elastic modulus of HyF/RAC at different strain rates

    图  10   不同应变率下HyF/RAC压缩韧性T

    Figure  10.   Compressive toughness T of HyF/RAC at different strain rates

    图  11   不同应变率下HyF/RAC压缩韧性动态增长因子F^T_{\rm{D}}

    Figure  11.   Dynamic increase factor F^T_{\rm{D}} of compressive toughness of HyF/RAC at different strain rates

    图  12   HyF/RAC应力-应变曲线特征参数预测模型性能

    SD—Standard deviation; Err—Mean relative error

    Figure  12.   Performance of prediction models for characteristic indices of HyF/RAC stress-strain curves

    图  13   不同应变率下HyF/RAC(C0组)试验曲线与各模型曲线对比

    Figure  13.   Comparison of experimental and theoretical stress-strain curves of C0 for HyF/RAC at different strain rates

    图  14   不同应变率下HyF/RAC(C3组)试验曲线与各模型曲线对比

    Figure  14.   Comparison of experimental and theoretical stress-strain curves of C3 for HyF/RAC at different strain rates

    图  15   不同应变率下HyF/RAC(C0和C3组)损伤演化

    Figure  15.   Damage evolution curves of C0 and C3 for HyF/RAC at different strain rates

    表  1   端钩钢纤维(HES)和塑钢纤维(MPP)属性

    Table  1   Properties of hooked-end steel fiber (HES) and macro-polypropylene fiber (MPP)

    Fiber typeEquivalent
    diameter/mm
    Length/mmAspect
    ratio
    Density/(kg·m−3)Tensile strength/MPaYoung’s modulus/GPa
    HES0.75354778001120200.0
    MPP0.9428309105805.5
    下载: 导出CSV

    表  2   钢-塑钢混杂纤维再生混凝土(HyF/RAC)配合比设计

    Table  2   Designed mix proportions of hybrid fiber reinforced recycled aggregate concrete (HyF/RAC) kg/m3

    MixNotationWaterCementSandRCANCAHESMPPAW
    A0NAC2514676390104400.000
    A11.5%HES/NAC251467639010441170.000
    A21.25%HES-0.25%MPP/NAC25146763901044982.280
    A31.0%HES-0.5%MPP/NAC25146763901044784.550
    A40.75%HES-0.75%MPP/NAC25146763901044596.830
    A50.5%HES-1.0%MPP/NAC25146763901044399.100
    B0RAC(50%)25146763952252200.0020
    B11.5%HES/RAC(50%)2514676395225221170.0020
    B21.25%HES-0.25%MPP/RAC(50%)251467639522522982.2820
    B31.0%HES-0.5%MPP/RAC(50%)251467639522522784.5520
    B40.75%HES-0.75%MPP/RAC(50%)251467639522522596.8320
    B50.5%HES-1.0%MPP/RAC(50%)251467639522522399.1020
    C0RAC(100%)2514676391044000.0040
    C11.5%HES/RAC(100%)251467639104401170.0040
    C21.25%HES-0.25%MPP/RAC(100%)25146763910440982.2840
    C31.0%HES-0.5%MPP/RAC(100%)25146763910440784.5540
    C40.75%HES-0.75%MPP/RAC(100%)25146763910440596.8340
    C50.5%HES-1.0%MPP/RAC(100%)25146763910440399.1040
    Notes: NAC—Natural aggregate concrete; RAC—Recycled aggregate concrete; RCA—Recycled coarse aggregate; NCA—Natural coarse aggregate; AW—Absorbed water; In iHES-jMPP/RAC(k), i—Volume fraction of HES, j—Volume fraction of MPP, k—Replacement ratio by mass of RCA.
    下载: 导出CSV

    表  3   不同应变率下HyF/RAC峰值应力 {\sigma ^{\text{p}}}

    Table  3   Results of peak stress {\sigma ^{\text{p}}} of HyF/RAC at different strain rates

    Mix10−5 s−110−4 s−110−3 s−15×10−3 s−1
    {\sigma ^{\text{p}}} /MPaCV/% {\sigma ^{\text{p}}} /MPaCV/% {\sigma ^{\text{p}}} /MPaCV/% {\sigma ^{\text{p}}} /MPaCV/%
    A031.31.5832.42.8433.73.1534.70.00
    A132.42.5334.02.7238.84.0139.31.03
    A232.94.3136.30.9839.11.2740.15.14
    A334.90.1739.02.9041.30.3441.90.84
    A431.53.5932.85.4035.24.2236.94.41
    A532.75.1934.43.2936.62.6137.35.13
    B028.31.0029.13.8732.41.4634.02.29
    B129.62.1530.81.1534.64.7135.74.56
    B231.91.3033.65.2734.23.9336.13.73
    B331.20.2332.41.9735.71.9837.26.84
    B430.41.5132.31.9935.33.1336.10.78
    B531.61.5933.71.7037.30.5738.32.22
    C024.68.5726.92.7430.64.4832.50.22
    C126.24.0427.83.8931.61.1432.43.45
    C226.82.2428.80.7232.22.6432.81.72
    C328.42.6931.10.6833.02.6934.43.63
    C427.80.9530.06.2132.72.6033.15.32
    C526.30.7927.32.2330.65.4632.70.43
    Note: CV—Coefficients of variation.
    下载: 导出CSV

    表  4   不同应变率下HyF/RAC峰值应变 {\varepsilon ^{\text{p}}}

    Table  4   Results of peak strain {\varepsilon ^{\text{p}}} of HyF/RAC at different strain rates

    Mix10−5 s−110−4 s−110−3 s−15×10−3 s−1
    {\varepsilon ^{\text{p}}} /10−3CV/% {\varepsilon ^{\text{p}}} /10−3CV/% {\varepsilon ^{\text{p}}} /10−3CV/% {\varepsilon ^{\text{p}}} /10−3CV/%
    A0 2.376 4.73 2.330 8.37 2.224 1.67 2.101 9.02
    A1 2.410 2.87 2.340 7.71 2.256 10.77 2.199 11.43
    A2 2.413 1.55 2.390 0.74 2.378 11.52 2.321 6.02
    A3 2.599 8.68 2.555 3.18 2.528 3.98 2.500 3.42
    A4 2.419 2.70 2.425 6.95 2.413 10.11 2.312 11.72
    A5 2.443 6.27 2.432 8.62 2.330 6.22 2.254 1.68
    B0 2.593 3.67 2.469 0.79 2.370 3.18 2.325 6.08
    B1 2.651 9.27 2.631 6.65 2.620 6.75 2.510 6.20
    B2 2.673 3.61 2.645 9.62 2.592 5.28 2.481 9.76
    B3 2.760 5.68 2.708 7.48 2.631 7.32 2.610 5.55
    B4 2.583 0.39 2.544 2.43 2.544 7.28 2.533 8.45
    B5 2.666 2.41 2.658 6.79 2.630 4.84 2.591 2.11
    C0 2.814 4.46 2.726 3.44 2.621 2.51 2.524 2.73
    C1 2.933 1.81 2.815 11.43 2.708 5.28 2.694 0.33
    C2 2.950 1.47 2.813 1.33 2.769 2.75 2.733 2.20
    C3 2.941 1.62 2.853 0.99 2.845 6.83 2.648 3.47
    C4 3.041 3.67 2.996 4.01 2.891 0.79 2.861 9.33
    C5 2.981 3.50 2.859 1.67 2.754 7.66 2.701 0.46
    下载: 导出CSV

    表  5   不同应变率下HyF/RAC弹性模量E

    Table  5   Results of elastic modulus E of HyF/RAC at different strain rates

    Mix10−5 s−110−4 s−110−3 s−15×10−3 s−1
    E/GPaCV/%E/GPaCV/%E/GPaCV/%E/GPaCV/%
    A0 29.5 3.86 33.2 9.20 37.6 9.87 41.2 2.37
    A1 31.8 8.13 35.3 1.34 38.6 3.95 42.0 9.60
    A2 32.1 7.05 34.3 1.09 38.3 4.35 41.4 4.92
    A3 34.1 7.30 34.1 2.88 34.7 0.61 38.1 10.65
    A4 32.5 7.19 33.7 5.58 35.7 4.14 37.4 11.49
    A5 33.9 4.75 34.0 5.06 35.0 3.23 38.2 2.85
    B0 24.8 7.61 26.2 8.55 28.6 3.24 30.8 2.69
    B1 25.6 9.08 26.2 0.91 28.6 5.58 30.8 9.23
    B2 27.1 0.22 28.1 11.70 29.4 8.73 33.9 8.52
    B3 27.3 0.70 28.7 9.85 31.0 6.90 31.7 1.92
    B4 28.2 1.65 29.9 3.60 33.2 0.66 33.6 6.38
    B5 27.2 4.70 27.8 11.33 28.9 9.67 32.9 11.19
    C0 18.7 3.06 21.9 11.63 24.9 6.18 26.7 9.24
    C1 20.7 8.05 22.8 11.44 26.3 11.54 27.8 7.55
    C2 23.2 7.56 24.3 2.31 26.1 1.54 29.5 10.99
    C3 25.1 6.06 26.3 4.08 28.0 11.09 28.1 2.47
    C4 22.9 0.56 23.3 2.43 25.2 4.69 28.3 9.75
    C5 22.7 0.56 24.4 9.26 27.9 3.17 29.2 9.11
    下载: 导出CSV

    表  6   不同应变率下HyF/RAC压缩韧性T

    Table  6   Results of compressive toughness T of HyF/RAC at different strain rates

    Mix10−5 s−110−4 s−110−3 s−15×10−3 s−1
    T/MPaT/MPaT/MPaT/MPa
    A00.0420.0440.0460.043
    A10.0470.0490.0510.050
    A20.0470.0510.0530.047
    A30.0550.0580.0600.062
    A40.0470.0480.0520.053
    A50.0470.0490.0470.051
    B00.0410.0430.0430.045
    B10.0460.0480.0500.052
    B20.0490.0510.0530.056
    B30.0510.0510.0550.057
    B40.0480.0500.0540.057
    B50.0500.0510.0570.058
    C00.0380.0400.0430.045
    C10.0430.0460.0500.053
    C20.0480.0490.0510.057
    C30.0520.0530.0550.052
    C40.0510.0540.0540.057
    C50.0470.0470.0470.052
    下载: 导出CSV

    表  7   现有压缩动态本构模型

    Table  7   Review of dynamic constitutive models under compression

    ReferenceModelParameterApplication range
    Ibrahim et al[21] \begin{gathered} y = \frac{{Ax + \left( {B - 1} \right){x^2}}}{{1 + \left( {A - 2} \right)x + B{x^2}}} \\ A\left( {A - 2} \right) - B + 1 \geqslant 0 \\ A + B > 1 \\ \end{gathered} \begin{gathered} A = 3.6\exp \left( {9.0 \times {{10}^{ - 8}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right)\left( {1 + 0.01R_V^{0.82}} \right)} \right) \\ B = 0.22\exp \left( {3.8 \times {{10}^{ - 7}}\left( {\frac{{\dot \varepsilon }}{{{{\dot \varepsilon }_{\text{s}}}}}} \right)\left( {1 + 0.002R_V^{0.82}} \right)} \right) \\ \end{gathered} \begin{gathered} 25{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 125{\text{ }}{{\text{s}}^{ - 1}} \\ 1.2{\text{% }} \leqslant V \leqslant 1.4\% \\ \end{gathered}
    Zhou et al[22] \begin{gathered} \sigma = {\sigma _{\text{m}}}\left( {1 - D} \right) = E\varepsilon \left( {1 - D} \right) \\ D = 1 - \exp \left[ { - {{\left( {\frac{\varepsilon }{{{F_0}}}} \right)}^m}} \right] \\ \end{gathered} \begin{gathered} {F_0} = 3.3578\ln \dot \varepsilon - 10.6562 \\ m = 1.2804\ln \dot \varepsilon - 1.8711 \\ \end{gathered} 19.8{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 281{\text{ }}{{\text{s}}^{ - 1}}
    Hou et al[23] \begin{gathered} \sigma = {\sigma _{\text{m}}}\left( {1 - {C_{\text{n}}}D} \right) = E\varepsilon \left( {1 - {C_{\text{n}}}D} \right) \\ D = 1 - \exp \left[ { - {{\left( {\frac{\varepsilon }{{{F_0}}}} \right)}^m}} \right] \\ \end{gathered} \begin{gathered} {F_0} = 0.0062 + 0.31{V^{1.7}} - 0.00167\left( {0.1 + V} \right)\ln \dot \varepsilon \\ m = - 0.56 + 3V + \left( {0.35 - 2V} \right)\ln \dot \varepsilon \\ {C_{\text{n}}} = 0.977 - 1.4V + \left( {0.004 + 0.25V} \right)\ln \dot \varepsilon \\ \end{gathered} \begin{gathered} \dot \varepsilon \leqslant 294{\text{ }}{{\text{s}}^{ - 1}} \\ V \leqslant 5\% \\ \end{gathered}
    Sun et al[25] \begin{gathered} \sigma = {\sigma _{\text{m}}}\left( {1 - D} \right) = E\varepsilon \left( {1 - D} \right) \\ \dot D = AD\left( {1 - D} \right) \\ \end{gathered} \begin{gathered} {D} = 0.35 - 8.2 \times {10^{ - 9} }\left( {\frac{ {\dot \varepsilon } }{ { { {\dot \varepsilon }_{\text{s} } } } } } \right) - \\ \qquad 4.4V + 1.3 \times {10^{ - 7} }\left( {\frac{ {\dot \varepsilon } }{ { { {\dot \varepsilon }_{\text{s} } } } } } \right)V \\ A = 234 + 1.3 \times {10^{ - 7} }\left( {\frac{ {\dot \varepsilon } }{ { { {\dot \varepsilon }_{\text{s} } } } } } \right) + \\ \qquad 1718V - 8.6 \times {10^{ - 5} }\left( {\frac{ {\dot \varepsilon } }{ { { {\dot \varepsilon }_{\text{s} } } } } } \right)V \\ \end{gathered} \begin{gathered} 53{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 152{{\text{s}}^{ - 1}} \\ V \leqslant 6.0\% \\ \end{gathered}
    Zhang et al[26] \begin{gathered} \sigma = \left( {1 - D} \right){\sigma _{\text{m}}} \\ {\sigma _{\text{m}}} = {\sigma _{\text{e}}}\left( \varepsilon \right) + {E_1}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _1}}}} \right){\rm{d}}\tau } + \\ \qquad {E_2}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _2}}}} \right){\rm{d}}\tau } \\ {\sigma _{\text{e}}}\left( \varepsilon \right) = E\varepsilon + \alpha {\varepsilon ^2} + \beta {\varepsilon ^3} \\ D = \left\{ \begin{gathered} 0{\text{ }}\qquad(\varepsilon \leqslant {\varepsilon ^{{\text{th}}}}) \\ 1 - \exp \left[ { - {{\left( {\frac{{\varepsilon - {\varepsilon ^{{\text{th}}}}}}{{{F_0}}}} \right)}^m}} \right]{\text{ }}\qquad(\varepsilon > {\varepsilon ^{{\text{th}}}}) \\ \end{gathered} \right. \\ \end{gathered} No fitting equation \begin{gathered} 27{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant 94{\text{ }}{{\text{s}}^{ - 1}} \\ V \leqslant 0.2\% \\ \end{gathered}
    Wang et al[27] \begin{gathered} \sigma = \left( {1 - D} \right)\sigma \\ {\sigma _{\text{m}}} = {\sigma _{\text{e}}}\left( \varepsilon \right) + {E_1}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _1}}}} \right){\rm{d}}\tau } + \\ \qquad {E_2}\int_0^t {\dot \varepsilon \exp \left( { - \frac{{t - \tau }}{{{\varphi _2}}}} \right){\rm{d}}\tau } \\ D = \left\{ \begin{gathered} 0{\text{ }}\qquad(\varepsilon \leqslant {\varepsilon ^{{\text{th}}}} ) \\ {K_D}{{\dot \varepsilon }^{\lambda - 1}}{\left( {\varepsilon - {\varepsilon ^{{\text{th}}}}} \right)^\kappa }{\text{ }}\qquad(\varepsilon > {\varepsilon ^{{\text{th}}}} ) \\ \end{gathered} \right. \\ \end{gathered} No fitting equation {10^{ - 4}}{\text{ }}{{\text{s}}^{ - 1}} \leqslant \dot \varepsilon \leqslant {10^3}{\text{ }}{{\text{s}}^{ - 1}}
    Notes: y = {\sigma \mathord{\left/ {\vphantom {\sigma { {\sigma ^{\text{p} } } } } } \right. } { {\sigma ^{\text{p} } } }}, x = {\varepsilon \mathord{\left/ {\vphantom {\varepsilon { {\varepsilon ^{\text{p} } } } } } \right. } { {\varepsilon ^{\text{p} } } }}, \sigma —Stress, {\sigma ^{\text{p}}} —Peak stress, \varepsilon —Strain, {\varepsilon ^{\text{p}}} —Peak strain; RV—Reinforcing index of hybrid fibers; D—Damage parameter; t—Loading time; τ—Delay time of stress; E1, {\varphi _1} —Elastic modulus and relaxation time at a low strain rate and frequency; E2, {\varphi _2} —Elastic modulus and relaxation time at a high strain rate and frequency; α, β—Elastic constant; {K_D},{\text{ }}\lambda ,{\text{ }}\kappa —Material parameter; {\varepsilon ^{{\text{th}}}} —Strain threshold.
    下载: 导出CSV

    表  8   HyF/RAC修正模型参数 \alpha 拟合值

    Table  8   Fitted results of parameter \alpha in modified constitutive models for HyF/RAC

    Mix \dot \varepsilon
    10−5 s−110−4 s−110−3 s−15×10−3 s−1
    Fitted valueR2Fitted valueR2Fitted valueR2Fitted valueR2
    A03.4340.9913.3990.9462.5970.9532.2850.940
    A11.8820.9781.1750.9981.6990.9861.3520.973
    A21.3860.9991.4010.9971.0200.9811.0390.994
    A31.4420.9971.9120.9921.6070.9651.6500.974
    A42.2190.9942.4310.9702.0570.9651.4660.984
    A52.6000.9982.6330.9842.2880.9711.7570.992
    B03.5240.9913.7420.9942.5890.9423.0530.997
    B11.4400.9761.1250.9831.2250.9971.8730.996
    B21.9320.9852.1240.9912.0010.9961.5830.979
    B32.0260.9941.6360.9992.2740.9882.2970.984
    B41.8760.9902.6830.9922.3050.9942.6130.935
    B52.4570.9943.0360.9972.8730.9402.4960.984
    C03.1730.9782.9580.9783.6090.9864.1370.954
    C11.5520.9931.6570.9762.2800.9762.7490.993
    C21.6730.9752.0130.9992.2590.9992.3640.953
    C32.0590.9982.1490.9992.2780.9982.7320.996
    C41.8680.9762.1740.9973.3390.9682.8420.934
    C52.2180.9712.8590.9903.4830.9643.3940.993
    下载: 导出CSV
  • [1] 高光发. 混凝土材料动态压缩强度的应变率强化规律[J]. 高压物理学报, 2017, 31(3):261-270.

    GAO Guangfa. Effect of strain-rate hardening on dynamic compressive strength of plain concrete[J]. Chinese Jour-nal of High Pressure Physics,2017,31(3):261-270(in Chinese).

    [2] 王国盛, 路德春, 杜修力, 等. 混凝土材料真实动态强度及率效应机理研究[J]. 工程力学, 2018, 35(6):58-67.

    WANG Guosheng, LU Dechun, DU Xiuli, et al. Research on the actual dynamic strength and the rate effect mecha-nisms for concrete materials[J]. Engineering Mechanics,2018,35(6):58-67(in Chinese).

    [3] 艾思平, 唐鹏. 考虑地震量级作用下橡胶纤维混凝土受压动力性能试验研究[J]. 建筑材料学报, 2021, 24(5): 1002-1010.

    AI Siping, TANG Peng. Experimental study on the dynamic behavior of rubber fiber reinforced concrete under the action of earthquake magnitude[J]. Journal of Building Material, 2021, 24(5): 1002-1010(in Chinese).

    [4] 白卫峰, 李思蕾, 管俊峰, 等. 再生混凝土单轴压缩动态力学性能试验研究[J]. 建筑材料学报, 2022, 25(5): 498-508.

    BAI Weifeng, LI Silei, GUAN Junfeng, et al. Study on dynamic mechanical properties of recycled concrete under uniaxial compression[J]. Journal of Building Materials,2022, 25(5): 498-508(in Chinese).

    [5]

    XIAO J, ZHANG K, ZHANG Q. Strain rate effect on compres-sive stress-strain curves of recycled aggregate concrete with seawater and sea sand[J]. Construction and Building Materials,2021,300:124014. DOI: 10.1016/j.conbuildmat.2021.124014

    [6] 董海龙, 彭有开, 骆开静, 等. 粗骨料取代下的高性能再生混凝土率敏性研究[J]. 实验力学, 2019, 34(2):249-257.

    DONG Hailong, PENG Youkai, LUO Kaijing, et al. Study on rate sensitivity of high performance recycled concrete with different coarse aggregate replacement ratios[J]. Journal of Experimental Mechanics,2019,34(2):249-257(in Chinese).

    [7]

    TANG Z, LI W, TAM V W Y, et al. Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete[J]. Composites Part B: Engi-neering,2020,185:107776. DOI: 10.1016/j.compositesb.2020.107776

    [8]

    FENG J, YIN G, TUO H, et al. Parameter optimization and regression analysis for multi-index of hybrid fiber-reinforced recycled coarse aggregate concrete using orthogonal experimental design[J]. Construction and Building Materials,2021,267:121013. DOI: 10.1016/j.conbuildmat.2020.121013

    [9] 陈宇良, 吉云鹏, 陈宗平, 等. 钢纤维再生混凝土三轴受压力学性能试验[J]. 复合材料学报, 2022, 39(8): 4005-4016.

    CHEN Yuliang, JI Yunpeng, CHEN Zongping, et al. Experiment on mechanical properties of steel fiber recycled aggregate concrete under triaxial compression[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 4005-4016(in Chinese).

    [10] 丁亚红, 郭书奇, 张向冈, 等. 玄武岩纤维对再生混凝土抗碳化性能的影响[J]. 复合材料学报, 2022, 39(3): 1228-1238.

    DING Yahong, GUO Shuqi, ZHANG Xianggang, et al. Influence of basalt fiber on the anti-carbonation performance of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1228-1238(in Chinese).

    [11]

    XIE J, KOU S, MA H, et al. Advances on properties of fiber reinforced recycled aggregate concrete: Experiments and models[J]. Construction and Building Materials,2021,277:122345. DOI: 10.1016/j.conbuildmat.2021.122345

    [12] 王兴国, 姜茂林, 陈旭, 等. 不同预浸骨料-PVA纤维对再生混凝土力学性能影响[J]. 复合材料学报, 2022, 39(3): 1205-1214.

    WANG Xingguo, JIANG Maolin, CHEN Xu, et al. Effect of different pre-soaked aggregate-PVA fiber on the mechani-cal properties of recycled aggregate concrete[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 1205-1214(in Chinese).

    [13] 孔祥清, 何文昌, 周聪, 等. 混杂掺入钢/聚丙烯纤维再生混凝土力学性能及抗冲击性能试验研究[J]. 建筑科学, 2020, 36(3):94-99.

    KONG Xiangqing, HE Wenchang, ZHOU Cong, et al. Experimental investigation on the mechanical properties and impact resistance of steel and polypropylene hybrid fiber reinforced recycled aggregates concrete[J]. Building Science,2020,36(3):94-99(in Chinese).

    [14]

    FENG J, YIN G, TUO H, et al. Uniaxial compressive behavior of hook-end steel and macro-polypropylene hybrid fibers reinforced recycled aggregate concrete[J]. Construction and Building Materials,2021,304:124559. DOI: 10.1016/j.conbuildmat.2021.124559

    [15] 周宏宇, 麻全周, 赵晓花, 等. 考虑应变率效应的混凝土材料单轴压缩特性尺寸效应研究[J]. 混凝土, 2021(1):61-65, 69. DOI: 10.3969/j.issn.1002-3550.2021.01.015

    ZHOU Hongyu, MA Quanzhou, ZHAO Xiaohua, et al. Experimental study on dynamic rate relevance of concrete size effect[J]. Concrete,2021(1):61-65, 69(in Chinese). DOI: 10.3969/j.issn.1002-3550.2021.01.015

    [16] 肖诗云, 张剑. 不同应变率下混凝土受压损伤试验研究[J]. 土木工程学报, 2010, 43(3):40-45.

    XIAO Shiyun, ZHANG Jian. Compressive damage experiment of concrete at different strain rates[J]. China Civil Engineering Journal,2010,43(3):40-45(in Chinese).

    [17] 焦楚杰, 孙伟, 张亚梅, 等. 钢纤维高强混凝土在不同应变率时的单轴受压性能[J]. 建筑结构, 2004, 34(8):65-67.

    JIAO Chujie, SUN Wei, ZHANG Yamei, et al. Mechanical properties of SFRHSC under uniaxial compression with different strain rates[J]. Building Structure,2004,34(8):65-67(in Chinese).

    [18] 梁宁慧, 杨鹏, 刘新荣, 等. 高应变率下多尺寸聚丙烯纤维混凝土动态压缩力学性能研究[J]. 材料导报, 2018, 32(2):288-294.

    LIANG Ninghui, YANG Peng, LIU Xinrong, et al. A study on dynamic compressive mechanical properties of multi-size polypropylene fiber concrete under high strain rate[J]. Materials Reports,2018,32(2):288-294(in Chinese).

    [19] 沈才华, 钱晋, 陈晓峰, 等. 纤维掺量对PVA纤维混凝土力学参数的影响及压缩韧性指标的计算方法[J]. 硅酸盐通报, 2020, 39(10):3152-3160.

    SHEN Caihua, QIAN Jin, CHEN Xiaofeng, et al. Influence of fiber content on mechanical parameters of PVA fiber concrete and method for calculating compression toughness index[J]. Bulletin of the Chinese Ceramic Society,2020,39(10):3152-3160(in Chinese).

    [20]

    HE W, KONG X, FU Y, et al. Experimental investigation on the mechanical properties and microstructure of hybrid fiber reinforced recycled aggregate concrete[J]. Construction and Building Materials,2020,261:120488. DOI: 10.1016/j.conbuildmat.2020.120488

    [21]

    IBRAHIM S M, ALMUSALLAM T H, AL-SALLOUM Y A, et al. Strain rate dependent behavior and modeling for compression response of hybrid fiber reinforced concrete[J]. Latin American Journal of Solids and Structures,2016,13:1695-1715. DOI: 10.1590/1679-78252717

    [22]

    ZHOU J, CHEN X. Stress-strain behavior and statistical continuous damage model of cement mortar under high strain rates[J]. Journal of Materials in Civil Engineering,2013,25(1):120-130. DOI: 10.1061/(ASCE)MT.1943-5533.0000570

    [23]

    HOU X, CAO S, RONG Q, et al. Effects of steel fiber and strain rate on the dynamic compressive stress-strain relationship in reactive powder concrete[J]. Construction and Building Materials,2018,170:570-581. DOI: 10.1016/j.conbuildmat.2018.03.101

    [24]

    CUI T, HE H, YAN W, et al. Compression damage constitutive model of hybrid fiber reinforced concrete and its experimental verification[J]. Construction and Building Materials,2020,264:120026. DOI: 10.1016/j.conbuildmat.2020.120026

    [25]

    SUN X, ZHAO K, LI Y, et al. A study of strain-rate effect and fiber reinforcement effect on dynamic behavior of steel fiber-reinforced concrete[J]. Construction and Building Materials,2018,158:657-669. DOI: 10.1016/j.conbuildmat.2017.09.093

    [26]

    ZHANG H, WANG B, XIE A, et al. Experimental study on dynamic mechanical properties and constitutive model of basalt fiber reinforced concrete[J]. Construction and Building Materials,2017,152:154-167. DOI: 10.1016/j.conbuildmat.2017.06.177

    [27] 王礼立, 胡时胜, 杨黎明, 等. 聊聊动态强度和损伤演化[J]. 爆炸与冲击, 2017, 37(2):169-179.

    WANG Lili, HU Shisheng, YANG Liming, et al. Talk about dynamic strength and damage evolution[J]. Explosion and Shock Waves,2017,37(2):169-179(in Chinese).

    [28]

    CAO S, HOU X, RONG Q. Dynamic compressive properties of reactive powder concrete at high temperature: A review[J]. Cement and Concrete Composites,2020,110:103568. DOI: 10.1016/j.cemconcomp.2020.103568

    [29] 中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB/T 50010—2010[S]. 北京: 中国建筑工业出版社, 2015.

    Ministry of Housing and Urban-Rural Development of the People's Republic of China. Code for design of concrete structures: GB/T 50010—2010[J]. Beijing: China Architecture and Building Press, 2015(in Chinese).

    [30] 张聪, 余志辉, 韩世诚, 等. 混杂纤维增强应变硬化水泥基复合材料的压缩本构关系[J]. 复合材料学报, 2020, 37(5):1221-1226.

    ZHANG Cong, YU Zhihui, HAN Shicheng, et al. Compression constitutive relation of hybrid fiber reinforced strain hardening cementitous composites[J]. Acta Materiae Compositae Sinica,2020,37(5):1221-1226(in Chinese).

    [31]

    SHI X, PARK P, REW Y, et al. Constitutive behaviors of steel fiber reinforced concrete under uniaxial compression and tension[J]. Construction and Building Materials,2020,233:117316. DOI: 10.1016/j.conbuildmat.2019.117316

    [32]

    ABADEL A, ABBAS H, ALMUSALLAM T, et al. Mechanical properties of hybrid fibre-reinforced concrete-analytical modelling and experimental behaviour[J]. Magazine of Concrete Research,2016,68:823-843. DOI: 10.1680/jmacr.15.00276

    [33] 施林林, 宋玉普, 沈璐. 不同应变率下大骨料及湿筛混凝土单轴受压试验研究[J]. 世界地震工程, 2016, 32(2):270-276.

    SHI Linlin, SONG Yupu, SHEN Lu. Experimental study on uniaxial compression properties of large aggregate and wet-screened concrete at different strain rates[J]. World Earthquake Engineering,2016,32(2):270-276(in Chinese).

    [34] 李庆斌, 邓宗才, 张立翔. 考虑初始弹模变化的混凝土动力损伤本构模型[J]. 清华大学学报(自然科学版), 2003(8):1088-1091. DOI: 10.3321/j.issn:1000-0054.2003.08.025

    LI Qingbin, DENG Zongcai, ZHANG Lixiang. Dynamic damage constitutive model for concrete accounting for the difference of the initial elastic modulus[J]. Journal of Tsinghua University (Science and Technology),2003(8):1088-1091(in Chinese). DOI: 10.3321/j.issn:1000-0054.2003.08.025

    [35]

    DONG S, HAN B, YU X, et al. Dynamic impact behaviors and constitutive model of super-fine stainless wire reinforced reactive powder concrete[J]. Construction and Building Materials,2018,184:602-616. DOI: 10.1016/j.conbuildmat.2018.07.027

  • 期刊类型引用(1)

    1. 王振廷,赵国华,尹吉勇. 可膨胀石墨在组合聚醚中的沉降问题及阻燃性能. 黑龙江科技大学学报. 2025(01): 65-69 . 百度学术

    其他类型引用(0)

图(15)  /  表(8)
计量
  • 文章访问数:  996
  • HTML全文浏览量:  495
  • PDF下载量:  63
  • 被引次数: 1
出版历程
  • 收稿日期:  2021-10-14
  • 修回日期:  2021-12-09
  • 录用日期:  2021-12-12
  • 网络出版日期:  2021-12-21
  • 刊出日期:  2022-10-31

目录

/

返回文章
返回