钢板屈服对CFRP-钢界面粘接性能影响的试验研究

Experimental study on the effect of steel yielding on the bond behavior between CFRP and steel plate

  • 摘要: 为研究钢板屈服对碳纤维增强树脂基复合材料(CFRP)-钢粘接界面的性能影响,开展了一系列CFRP-钢双搭接粘接节点拉伸试验和有限元模拟。以钢板厚度和CFRP粘接长度为变量,通过拉伸试验得到了钢板屈服条件下的节点拉伸荷载-位移曲线、有效粘接长度和失效模式。试验结果表明,15 mm厚钢板的粘接节点在破坏之前表现为弹性状态,而8 mm厚钢板的粘接节点在破坏前钢板已经屈服并进入塑性状态。钢板屈服使得节点的荷载-位移曲线由线性变为非线性,且钢板屈服时节点的失效位移增加;随着钢板屈服,节点的失效模式由CFRP层离破坏变为CFRP层离和钢板-胶层界面脱粘混合模式,且随着钢板屈服程度的增大,钢板-胶层脱粘面积也在增大。根据本文所采用的节点试件及所选取的材料属性,当8 mm厚钢板节点在出现钢板屈服后,其最大失效位移约为15 mm厚钢板节点的4.2倍,但其承载力仅为15 mm厚钢板节点的69.92%。即节点由于钢板屈服所获得的延性是以节点承载力降低为代价的。从有限元结果可以发现,当钢板屈服程度增加,节点失效位置将会从接头处转移至粘接接头远端,有效粘接长度也随之减小。

     

    Abstract: To study the effect of steel yielding on the bond behavior between carbon fiber reinforced polymer (CFRP) and steel plate, a series of tensile tests and finite element analysis were conducted with CFRP-steel double strap bonded joints. With the steel plate thickness and bond length as the variables, the load-displacement curves, effect bond length and failure mode of the bonded joints were obtained through static tensile testing. The results show that the joints with 15 mm thick steel plate maintains elastic until failure. On the other hand, joints with 8 mm thick steel plate with bond length longer than effective bond length exhibit steel yielding when fail. The load-displacement curve becomes nonlinear and ductile with the yielding of the steel plate and the displacement at failure is extensively increased. The failure mode of the bonded joints is CFRP delamination when steel is not yield and is a combination of CFRP delamination and steel-adhesive interface debonding when steel is yield. And the area of steel-adhesive debonding is increasing with a larger area of steel yielding. According to the joint and material properties adopted in this work, when the joint with 8 mm steel plate yields, its maximum failure displacement is about 4.2 times of the joint with 15 mm thick steel plate, but the capacity of the 8 mm joint is only 69.92% of the 15 mm joint. In other words, the ductility of the joint due to steel yielding is achieved at the cost of reduction in capacity. From the results of finite element analysis, it can be found that the failure position would move to bonded end with a larger area of steel yielding and the effective bond length would be shorter.

     

/

返回文章
返回