沥青增塑熔纺聚丙烯腈基碳纤维前驱体纤维的制备与性能

Preparation and properties of pitch plasticized melt spinning polyacrylonitrile-based carbon fibers precursor

  • 摘要: 为了降低聚丙烯腈(PAN)的熔点和提升熔纺PAN纤维的性能,本文以各向同性萘沥青(INP)和煤焦油沥青(ICP)作为增塑剂,比较了二者对85∶14∶1 摩尔比的聚(丙烯腈-丙烯酸甲酯-4-丙烯酰氧基二苯甲酮)三元共聚物(P(AN-MA-ABP))的增塑效果。优选1wt%的INP与P(AN-MA-ABP)充分混合、熔融纺丝、牵伸制备了1wt%INP/P(AN-MA-ABP)共聚物纤维,并研究了紫外(UV)辐照时间对1wt%INP/P(AN-MA-ABP)共聚物纤维的影响。结果表明:相比于稠环结构的ICP,长链含硫杂环结构的INP具有良好的增塑效果。制备的1wt%INP/P(AN-MA-ABP)共聚物纤维直径约52 μm,拉伸强度约250 MPa,表面光滑,结构致密。UV辐照时间从0 min增加到60 min,纤维表面氧含量由17.3%提高到26.0%。氮气条件下,环化起始温度由303.8℃降到292.4℃,环化峰值温度由318.0℃降到308.8℃。空气条件下,环化起始温度由299.9℃降到295.0℃,环化峰值温度由316.4℃降到312.6℃。UV辐照20 min,氮气条件下800℃时纤维的碳收率由41.0%提高到43.4%。UV辐照降低了1wt%INP/P(AN-MA-ABP)共聚物纤维的环化起始温度、峰值温度、焓值,提高了碳收率,有利于后续热处理。

     

    Abstract: In order to reduce the melting point of polyacrylonitrile (PAN) and improve the properties of melt-spun PAN fibers, the effects of isotropic naphthalene pitch (INP) and coal tar pitch (ICP) as plasticizers on 85∶14∶1 mole percent poly(acrylonitrile-methyl acrylate-4-acryloxy dibenzophenone) terpolymer (P(AN-MA-ABP)) were investigated in detail. The 1wt%INP/P(AN-MA-ABP) terpolymer fibers were prepared by mixing 1wt%INP with P(AN-MA-ABP), and then melting spinning and drawing. The effects of UV irradiation time on 1wt%INP/P(AN-MA-ABP) terpolymer fibers were studied. The results show that the long-chain sulfur heterocyclic INP has a better plasticizing effect than the ICP with a thick ring structure. The diameter of the 1wt%INP/P(AN-MA-ABP) terpolymer fibers is about 52 μm, and the tensile strength is about 250 MPa, which has a smooth surface and a dense structure. Delaying the UV irradiation from 0 min to 60 min, the oxygen content on the surface of 1wt%INP/P(AN-MA-ABP) terpolymer fibers increases from 17.3% to 26.0%. Under nitrogen conditions, the initial cyclization temperature decreases from 303.8℃ to 292.4℃, and the cyclization peak temperature decreases from 318.0℃ to 308.8℃. Under air conditions, the initial cyclization temperature decrease from 299.9℃ to 295.0℃, and the cyclization peak temperature decreases from 316.4℃ to 312.6℃. After UV irradiation for 20 min, the carbon yield of 1wt%INP/P(AN-MA-ABP) terpolymer fibers carbonized at 800℃ under nitrogen increases from 41.0% to 43.4%. UV irradiation decreases the initial cyclization temperature, peak temperature, and enthalpy value of 1wt%INP/P(AN-MA-ABP) terpolymer fibers and increases the carbon yield, which are beneficial to the subsequent heat-treatment process.

     

/

返回文章
返回