Citation: | NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Textile-based for supercapacitors: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 981-992. doi: 10.13801/j.cnki.fhclxb.20211117.001 |
[1] |
BEGUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials,2014,26(14):2219-2251. doi: 10.1002/adma.201304137
|
[2] |
ZHI M, XING C, LI J, et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review[J]. Nanoscale,2013,5(1):72-88. doi: 10.1039/C2NR32040A
|
[3] |
LU X, LI G, TONG Y. A review of negative electrode materials for electrochemical supercapacitors[J]. Science China-Technological Sciences,2015,58(11):1799-1808. doi: 10.1007/s11431-015-5931-z
|
[4] |
BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials,2012,11(1):19-29. doi: 10.1038/nmat3191
|
[5] |
CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nano-technology,2008,3(1):31-35. doi: 10.1038/nnano.2007.411
|
[6] |
ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
|
[7] |
KIM B H, BUI N N, YANG K S, et al. Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning[J]. Bulletin of the Korean Chemical Society, 2009, 30(9): 1967-1972.
|
[8] |
MA X, NING G, KAN Y, et al. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors[J]. Electrochimica Acta,2014,150:108-113. doi: 10.1016/j.electacta.2014.10.128
|
[9] |
SHI Z, XING L, LIU Y, et al. A porous biomass-based sandwich-structured Co3O4@carbon fiber@Co3O4 composite for high-performance supercapacitors[J]. Carbon,2018,129:819-825. doi: 10.1016/j.carbon.2017.12.105
|
[10] |
DING M, QU Y, ZHANG X, et al. Reduced graphene oxide/g-C3N4 modified carbon fibers for high performance fiber supercapacitors[J]. New Journal of Chemistry,2021,45(2):923-929. doi: 10.1039/D0NJ05072E
|
[11] |
YU N, YIN H, ZHANG W, et al. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics[J]. Advanced Energy Materials, 2016, 6: 1501458
|
[12] |
VIGOLO B, PENICAUD A, COULON C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science,2000,290:1331-1334. doi: 10.1126/science.290.5495.1331
|
[13] |
BEHABTU N, YOUNG C C, PASQUALI M, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultra-high conductivity[J]. Science,2013,339(6116):182-186. doi: 10.1126/science.1228061
|
[14] |
LIMA M D, FANG S L, LEPRO X, et al. Biscrolling nanotube sheets and functional guests into yarns[J]. Science,2011,331(6013):51-55. doi: 10.1126/science.1195912
|
[15] |
ZHONG X H, LI Y L, LIU Y K, et al. Continuous multi-layered carbon nanotube yarns[J]. Advance Materials, 2010, 22(6): 692-696.
|
[16] |
REN J, LI L, CHEN C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery[J]. Advanced Materials,2013,25(8):1155-1159. doi: 10.1002/adma.201203445
|
[17] |
XUE M, XIE Z, ZHANG L, et al. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles[J]. Nanoscale,2011,3(7):2703-2708. doi: 10.1039/c0nr00990c
|
[18] |
CHEN X, QIU L, REN J, et al. Novel electric double-layer capacitor with a coaxial fiber structure[J]. Advanced Materials,2013,25(44):6436-6441. doi: 10.1002/adma.201301519
|
[19] |
CHOI C, LEE J A, CHOI A Y, et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores[J]. Advanced Materials,2014,26(13):2059-2065. doi: 10.1002/adma.201304736
|
[20] |
HOU Y, CHENG Y, HOBSON T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes[J]. Nano Letters,2010,10(7):2727-2733. doi: 10.1021/nl101723g
|
[21] |
XU Z, GAO C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications,2011,2:52.
|
[22] |
LI X, ZHAO T, WANG K, et al. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties[J]. Langmuir,2011,27(19):12164-12171. doi: 10.1021/la202380g
|
[23] |
DONG Z, JIANG C, CHENG H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials,2012,24(14):1856-1861. doi: 10.1002/adma.201200170
|
[24] |
HUANG T, ZHENG B, KOU L, et al. Flexible high performance wet-spun graphene fiber supercapacitors[J]. RSC Advances,2013,3(46):23957-23962. doi: 10.1039/c3ra44935a
|
[25] |
KONSTANTIN O V K, JALILI R, ESRAFILZADEH D, et al. High-performance multifunctional graphene yarns: Toward wearable all-carbon energy storage textiles[J]. ACS Nano,2014,8(3):2456-2466. doi: 10.1021/nn406026z
|
[26] |
KOU L, HUANG T, ZHENG B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature Communications,2014,5:3754.
|
[27] |
HU Y, CHENG H, ZHAO F, et al. All-in-one graphene fiber supercapacitor[J]. Nanoscale,2014,6(12):6448-6451. doi: 10.1039/c4nr01220h
|
[28] |
CHEN S, TAN P, WU X, et al. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes[J]. Advanced Functional Materials, 2017, 27(36): 1702493.
|
[29] |
QU G X, CHENG J L, PENG H S, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advance Materials,2016,28(19):3646-3652. doi: 10.1002/adma.201600689
|
[30] |
LAN X X, TIAN Z Q, SHEN P K. Hollow graphene fibers with archimedean-type spirals for flexible and wearable electronics[J]. ACS Applied Nano Materials,2021,4:6985-6994. doi: 10.1021/acsanm.1c01026
|
[31] |
YE X, ZHOU Q, JIA C, et al. A knittable fibriform super-capacitor based on natural cotton thread coated with graphene and carbon nanoparticles[J]. Electrochimica Acta,2016,206:155-164. doi: 10.1016/j.electacta.2016.04.100
|
[32] |
WEI C, XU Q, CHEN Z, et al. An all-solid-state yarn super-capacitor using cotton yarn electrodes coated with polypyrrole nanotubes[J]. Carbohydrate Polymers,2017,169:50-57. doi: 10.1016/j.carbpol.2017.04.002
|
[33] |
LIU N, MA W, TAO J, et al. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage[J]. Advanced Materials,2013,25(35):4925-4931. doi: 10.1002/adma.201301311
|
[34] |
LIU L, YU Y, YAN C, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes[J]. Nature Communications,2015,6:7260.
|
[35] |
DU X, ZHAN W, WANG Y, et al. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications[J]. Bio-resource Technology,2013,149:31-37. doi: 10.1016/j.biortech.2013.09.026
|
[36] |
HU X, XIONG W, WANG W, et al. Hierarchical manganese dioxide/poly(3, 4-ethylenedioxythiophene) core-shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solid-state supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1201-1211.
|
[37] |
LIU L, WENG W, DAI X, et al. Highly conductive graphene-bonded polyimide yarns for flexible electronics[J]. RSC Advances,2016,6(110):108362-108368. doi: 10.1039/C6RA24206E
|
[38] |
NIE W, LIU L, LI Q, et al. A wearable fiber-shaped super-capacitor based on a poly(lactic acid) filament and high loading polypyrrole[J]. RSC Advances,2019,9(33):19180-19188. doi: 10.1039/C9RA02171J
|
[39] |
BA Y, ZHOU S, JIAO S, et al. Fabrication of polyaniline/copp-er sulfide/poly(ethylene terephthalate) thread electrode for flexible fiber-shaped supercapacitors[J]. Journal of Applied Polymer Science, 2018, 135(42): 46769.
|
[40] |
PENG H, DENG J, LI X, et al. Superelastic supercapacitors with high performances during stretching[J]. Advanced Materials,2015,27(2):356-362. doi: 10.1002/adma.201404573
|
[41] |
CUI Y, LA MANTIA F, HU L, et al. Aqueous supercapacitors on conductive cotton[J]. Nano Research,2010,3(6):452-458. doi: 10.1007/s12274-010-0006-8
|
[42] |
WANG Z, LU X H, XIAO X, et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nano-rods hybrid structure[J]. ACS Nano,2012,6(1):656-661. doi: 10.1021/nn2041279
|
[43] |
PU X, LI L, LIU M, et al. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators[J]. Advanced Materials,2016,28(1):98-105. doi: 10.1002/adma.201504403
|
[44] |
ZHANG J, CHEN M, GE Y, et al. Manganese oxide on carbon fabric for flexible supercapacitors[J]. Journal of Nanomaterials,2016:2870761.
|
[45] |
MA C, RUAN S, WANG J, et al. Free-standing carbon nano-fiber fabrics for high performance flexible super-capacitor[J]. Journal of Colloid and Interface Science,2018,531:513-522. doi: 10.1016/j.jcis.2018.06.093
|
[46] |
YANG Y, HUANG Q, NIU L, et al. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics[J]. Advanced Materials, 2017, 29: 1606679.
|
[47] |
ZHANG C, TIAN J, RAO W, et al. Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors[J]. Cellulose,2019,26(5):3387-3399. doi: 10.1007/s10570-019-02321-3
|