Volume 39 Issue 3
Mar.  2021
Turn off MathJax
Article Contents
NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Textile-based for supercapacitors: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 981-992. doi: 10.13801/j.cnki.fhclxb.20211117.001
Citation: NIE Wenqi, SUN Jiangdong, XU Shuai, et al. Textile-based for supercapacitors: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 981-992. doi: 10.13801/j.cnki.fhclxb.20211117.001

Textile-based for supercapacitors: A review

doi: 10.13801/j.cnki.fhclxb.20211117.001
  • Received Date: 2021-08-26
  • Accepted Date: 2021-11-08
  • Rev Recd Date: 2021-10-09
  • Available Online: 2021-11-17
  • Publish Date: 2021-03-01
  • Textile-based energy storage is an important energy supply element of the microelectronic signal collection system for flexible wearable textiles. The recent research progress of flexible supercapacitors from multiple perspectives of fibers, yarns and fabrics, and states the preparation methods, advantages and disadvantages of supercapacitors of different matrix types are summarized. Focusing on the technological characteristics of textile supercapacitors, analysis the method that should be adopted to improve the performance of materials. Finally, an explanation for the presence of textile-based supercapacitor development and the key work of future which need to overcome is given an analysis and outlook.

     

  • loading
  • [1]
    BEGUIN F, PRESSER V, BALDUCCI A, et al. Carbons and electrolytes for advanced supercapacitors[J]. Advanced Materials,2014,26(14):2219-2251. doi: 10.1002/adma.201304137
    [2]
    ZHI M, XING C, LI J, et al. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: A review[J]. Nanoscale,2013,5(1):72-88. doi: 10.1039/C2NR32040A
    [3]
    LU X, LI G, TONG Y. A review of negative electrode materials for electrochemical supercapacitors[J]. Science China-Technological Sciences,2015,58(11):1799-1808. doi: 10.1007/s11431-015-5931-z
    [4]
    BRUCE P G, FREUNBERGER S A, HARDWICK L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials,2012,11(1):19-29. doi: 10.1038/nmat3191
    [5]
    CHAN C K, PENG H, LIU G, et al. High-performance lithium battery anodes using silicon nanowires[J]. Nature nano-technology,2008,3(1):31-35. doi: 10.1038/nnano.2007.411
    [6]
    ARMAND M, TARASCON J M. Building better batteries[J]. Nature,2008,451(7179):652-657. doi: 10.1038/451652a
    [7]
    KIM B H, BUI N N, YANG K S, et al. Electrochemical properties of activated polyacrylonitrile/pitch carbon fibers produced using electrospinning[J]. Bulletin of the Korean Chemical Society, 2009, 30(9): 1967-1972.
    [8]
    MA X, NING G, KAN Y, et al. Synthesis of S-doped mesoporous carbon fibres with ultrahigh S concentration and their application as high performance electrodes in supercapacitors[J]. Electrochimica Acta,2014,150:108-113. doi: 10.1016/j.electacta.2014.10.128
    [9]
    SHI Z, XING L, LIU Y, et al. A porous biomass-based sandwich-structured Co3O4@carbon fiber@Co3O4 composite for high-performance supercapacitors[J]. Carbon,2018,129:819-825. doi: 10.1016/j.carbon.2017.12.105
    [10]
    DING M, QU Y, ZHANG X, et al. Reduced graphene oxide/g-C3N4 modified carbon fibers for high performance fiber supercapacitors[J]. New Journal of Chemistry,2021,45(2):923-929. doi: 10.1039/D0NJ05072E
    [11]
    YU N, YIN H, ZHANG W, et al. High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics[J]. Advanced Energy Materials, 2016, 6: 1501458
    [12]
    VIGOLO B, PENICAUD A, COULON C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science,2000,290:1331-1334. doi: 10.1126/science.290.5495.1331
    [13]
    BEHABTU N, YOUNG C C, PASQUALI M, et al. Strong, light, multifunctional fibers of carbon nanotubes with ultra-high conductivity[J]. Science,2013,339(6116):182-186. doi: 10.1126/science.1228061
    [14]
    LIMA M D, FANG S L, LEPRO X, et al. Biscrolling nanotube sheets and functional guests into yarns[J]. Science,2011,331(6013):51-55. doi: 10.1126/science.1195912
    [15]
    ZHONG X H, LI Y L, LIU Y K, et al. Continuous multi-layered carbon nanotube yarns[J]. Advance Materials, 2010, 22(6): 692-696.
    [16]
    REN J, LI L, CHEN C, et al. Twisting carbon nanotube fibers for both wire-shaped micro-supercapacitor and micro-battery[J]. Advanced Materials,2013,25(8):1155-1159. doi: 10.1002/adma.201203445
    [17]
    XUE M, XIE Z, ZHANG L, et al. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on MnO2 nanoparticles[J]. Nanoscale,2011,3(7):2703-2708. doi: 10.1039/c0nr00990c
    [18]
    CHEN X, QIU L, REN J, et al. Novel electric double-layer capacitor with a coaxial fiber structure[J]. Advanced Materials,2013,25(44):6436-6441. doi: 10.1002/adma.201301519
    [19]
    CHOI C, LEE J A, CHOI A Y, et al. Flexible supercapacitor made of carbon nanotube yarn with internal pores[J]. Advanced Materials,2014,26(13):2059-2065. doi: 10.1002/adma.201304736
    [20]
    HOU Y, CHENG Y, HOBSON T, et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes[J]. Nano Letters,2010,10(7):2727-2733. doi: 10.1021/nl101723g
    [21]
    XU Z, GAO C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications,2011,2:52.
    [22]
    LI X, ZHAO T, WANG K, et al. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties[J]. Langmuir,2011,27(19):12164-12171. doi: 10.1021/la202380g
    [23]
    DONG Z, JIANG C, CHENG H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials,2012,24(14):1856-1861. doi: 10.1002/adma.201200170
    [24]
    HUANG T, ZHENG B, KOU L, et al. Flexible high performance wet-spun graphene fiber supercapacitors[J]. RSC Advances,2013,3(46):23957-23962. doi: 10.1039/c3ra44935a
    [25]
    KONSTANTIN O V K, JALILI R, ESRAFILZADEH D, et al. High-performance multifunctional graphene yarns: Toward wearable all-carbon energy storage textiles[J]. ACS Nano,2014,8(3):2456-2466. doi: 10.1021/nn406026z
    [26]
    KOU L, HUANG T, ZHENG B, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature Communications,2014,5:3754.
    [27]
    HU Y, CHENG H, ZHAO F, et al. All-in-one graphene fiber supercapacitor[J]. Nanoscale,2014,6(12):6448-6451. doi: 10.1039/c4nr01220h
    [28]
    CHEN S, TAN P, WU X, et al. High-performance wearable micro-supercapacitors based on microfluidic-directed nitrogen-doped graphene fiber electrodes[J]. Advanced Functional Materials, 2017, 27(36): 1702493.
    [29]
    QU G X, CHENG J L, PENG H S, et al. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode[J]. Advance Materials,2016,28(19):3646-3652. doi: 10.1002/adma.201600689
    [30]
    LAN X X, TIAN Z Q, SHEN P K. Hollow graphene fibers with archimedean-type spirals for flexible and wearable electronics[J]. ACS Applied Nano Materials,2021,4:6985-6994. doi: 10.1021/acsanm.1c01026
    [31]
    YE X, ZHOU Q, JIA C, et al. A knittable fibriform super-capacitor based on natural cotton thread coated with graphene and carbon nanoparticles[J]. Electrochimica Acta,2016,206:155-164. doi: 10.1016/j.electacta.2016.04.100
    [32]
    WEI C, XU Q, CHEN Z, et al. An all-solid-state yarn super-capacitor using cotton yarn electrodes coated with polypyrrole nanotubes[J]. Carbohydrate Polymers,2017,169:50-57. doi: 10.1016/j.carbpol.2017.04.002
    [33]
    LIU N, MA W, TAO J, et al. Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage[J]. Advanced Materials,2013,25(35):4925-4931. doi: 10.1002/adma.201301311
    [34]
    LIU L, YU Y, YAN C, et al. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes[J]. Nature Communications,2015,6:7260.
    [35]
    DU X, ZHAN W, WANG Y, et al. Preparation of activated carbon hollow fibers from ramie at low temperature for electric double-layer capacitor applications[J]. Bio-resource Technology,2013,149:31-37. doi: 10.1016/j.biortech.2013.09.026
    [36]
    HU X, XIONG W, WANG W, et al. Hierarchical manganese dioxide/poly(3, 4-ethylenedioxythiophene) core-shell nanoflakes on ramie-derived carbon fiber for high-performance flexible all-solid-state supercapacitor[J]. ACS Sustainable Chemistry & Engineering,2016,4(3):1201-1211.
    [37]
    LIU L, WENG W, DAI X, et al. Highly conductive graphene-bonded polyimide yarns for flexible electronics[J]. RSC Advances,2016,6(110):108362-108368. doi: 10.1039/C6RA24206E
    [38]
    NIE W, LIU L, LI Q, et al. A wearable fiber-shaped super-capacitor based on a poly(lactic acid) filament and high loading polypyrrole[J]. RSC Advances,2019,9(33):19180-19188. doi: 10.1039/C9RA02171J
    [39]
    BA Y, ZHOU S, JIAO S, et al. Fabrication of polyaniline/copp-er sulfide/poly(ethylene terephthalate) thread electrode for flexible fiber-shaped supercapacitors[J]. Journal of Applied Polymer Science, 2018, 135(42): 46769.
    [40]
    PENG H, DENG J, LI X, et al. Superelastic supercapacitors with high performances during stretching[J]. Advanced Materials,2015,27(2):356-362. doi: 10.1002/adma.201404573
    [41]
    CUI Y, LA MANTIA F, HU L, et al. Aqueous supercapacitors on conductive cotton[J]. Nano Research,2010,3(6):452-458. doi: 10.1007/s12274-010-0006-8
    [42]
    WANG Z, LU X H, XIAO X, et al. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nano-rods hybrid structure[J]. ACS Nano,2012,6(1):656-661. doi: 10.1021/nn2041279
    [43]
    PU X, LI L, LIU M, et al. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators[J]. Advanced Materials,2016,28(1):98-105. doi: 10.1002/adma.201504403
    [44]
    ZHANG J, CHEN M, GE Y, et al. Manganese oxide on carbon fabric for flexible supercapacitors[J]. Journal of Nanomaterials,2016:2870761.
    [45]
    MA C, RUAN S, WANG J, et al. Free-standing carbon nano-fiber fabrics for high performance flexible super-capacitor[J]. Journal of Colloid and Interface Science,2018,531:513-522. doi: 10.1016/j.jcis.2018.06.093
    [46]
    YANG Y, HUANG Q, NIU L, et al. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics[J]. Advanced Materials, 2017, 29: 1606679.
    [47]
    ZHANG C, TIAN J, RAO W, et al. Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors[J]. Cellulose,2019,26(5):3387-3399. doi: 10.1007/s10570-019-02321-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (1374) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return