ZnO@SnO2异质结复合纳米管的可控构筑及其光催化性能

Controllable construction of ZnO@SnO2 heterojunction composite nanotubes and their photocatalytic properties

  • 摘要: 性能优异的功能纳米材料的设计构筑对于光催化应用而言至关重要。基于模板自刻蚀机制,利用两步溶剂热技术,以一维ZnO纳米棒为模板,在无需附加酸刻蚀的条件下成功制备一维圆顶状ZnO@SnO2异质结纳米管复合材料(Heterojunction domed nanotubes,HDNs)。由于ZnO与SnO2具有匹配的能级结构,在纳米管界面处可形成促进载流子分离的内建电场,赋予该材料优异的光催化与稳定性能。通过控制实验过程中自产生的碱性强弱,实现两性氧化物ZnO的自刻蚀,从而实现ZnO@SnO2 HDNs的管壁厚度可控调控与催化性能的调节。借助SEM、TEM、STEM及PL等表征手段对材料的微观形貌、元素组成、生长机制与性能进行了考察。以甲基橙、亚甲基蓝、曙红等为污染物模型,光催化污染物降解实验结果表明,获得的ZnO@SnO2 HDNs具有优良的光催化性能,光照60 min内对亚甲基蓝、曙红的降解率可达到95%,表明构筑的纳米管异质结极大地促进了载流子的分离,抑制其复合,提高了光催化性能。同时,循环稳定性能测试说明构建的异质结纳米管催化剂具有良好的稳定性能,在染料降解方面具有广阔的应用前景。

     

    Abstract:
    The design and construction of functional nanomaterials with excellent properties is very important for photocatalytic applications. The ZnO@SnO2 heterojunction domed nanotubes (HDNs) were successfully prepared without additional acid etching step using one-dimensional ZnO nanorods as templates by two-step solvothermal technology based on the template self-etching mechanism. The built-in electric field which can promote carrier separation can be formed at the nanotube interface owing to the matching energy level structure between ZnO and SnO2, endowing the material excellent photocatalytic and stability properties. By controlling the intensity of self-generated alkaline during the experimental processes, the amphoteric oxide ZnO can be etched, achieving the controllable regulation of the thickness of tubes and their photocatalytic performance. The morphology, element composition, growth mechanism and properties of the ZnO@SnO2 HDNs were investigated by means of SEM, TEM, STEM and PL. Taking methyl orange, methylene blue and eosin as pollutant models, the experimental results of photocatalytic pollutant degradation showed that ZnO@SnO2 HDNs had excellent photocatalytic performance, and
    the degradation rate of methylene blue and eosin can reach 95% within 60 min. These results indicate that the constructed one-dimensional heterojunction can greatly promote the separation of carriers and inhibit their recombination, thereby improving the photocatalytic performance. At the same time, the cycle stability test showes that the heterojunction nanotube photocatalyst has great stability and broad application prospects in dye degradation.

     

/

返回文章
返回