Loading [MathJax]/jax/output/SVG/jax.js

爆炸载荷下机织物的动态响应与失效行为

解江, 高斌元, 甄婷婷, 姜超, 冯振宇

解江, 高斌元, 甄婷婷, 等. 爆炸载荷下机织物的动态响应与失效行为[J]. 复合材料学报, 2022, 39(10): 4949-4960. DOI: 10.13801/j.cnki.fhclxb.20211108.004
引用本文: 解江, 高斌元, 甄婷婷, 等. 爆炸载荷下机织物的动态响应与失效行为[J]. 复合材料学报, 2022, 39(10): 4949-4960. DOI: 10.13801/j.cnki.fhclxb.20211108.004
XIE Jiang, GAO Binyuan, ZHEN Tingting, et al. Dynamic response and failure behaviors of woven fabrics under blast load[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4949-4960. DOI: 10.13801/j.cnki.fhclxb.20211108.004
Citation: XIE Jiang, GAO Binyuan, ZHEN Tingting, et al. Dynamic response and failure behaviors of woven fabrics under blast load[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4949-4960. DOI: 10.13801/j.cnki.fhclxb.20211108.004

爆炸载荷下机织物的动态响应与失效行为

基金项目: 中央高校基本科研业务费(3122019193);中国民航大学研究生科研创新资助项目(2020YJS050)
详细信息
    通讯作者:

    解江,博士,副研究员,硕士生导师,研究方向为复合材料冲击动力学 E-mail: xiejiang5@126.com

  • 中图分类号: O383

Dynamic response and failure behaviors of woven fabrics under blast load

  • 摘要: 为探究爆炸载荷下纤维织物的动态响应与失效行为,对3种平纹纤维织物进行了准静态及高应变率拉伸试验,获取了织物的力学性能参数,建立了织物材料的本构模型。采用任意欧拉-拉格朗日算法(ALE)算法,建立了织物爆炸冲击数值分析模型,研究了爆炸载荷下纤维织物的动态响应过程和失效模式,并与试验结果进行了对比,验证了模型的有效性,得到了织物的变形峰值与比例距离之间的关系以及混杂层叠织物中各织物的吸能量。结果表明,3种织物表现出不同程度的应变率敏感性,芳纶和超高分子量聚乙烯(Ultra-high molecular weight polyethylene,UHMWPE)纤维织物的失效应变和极限强度都随应变率的增加而增大,应变率效应明显,碳纤维织物的极限强度略有增加,应变率效应不明显。数值分析得到了与试验相同的织物失效模式:中心破孔和简支边界撕裂。在所研究工况范围内,织物的变形峰值与比例距离成反比例关系,且变形峰值超过39 mm时背爆面织物会发生失效;UHMWPE纤维织物层的比吸能达到24.7 J/g,分别是芳纶织物和碳纤织物的4.3倍和8.5倍。
    Abstract: In order to explore the dynamic response and failure behaviors of fiber fabrics under blast load, quasi-static and high strain rate tensile tests were carried out on three plain fabrics, the mechanical properties of the fabrics were obtained, and the constitutive model of the fabric was established. Using the Arbitrary Lagrangian-Eulerian (ALE) algorithm, a numerical analysis model of the fabric under blast was established, and the dynamic response process and failure modes of the fabric under blast load were studied. The results were compared with the test to verify the validity of the model. The relationship between the deformation peak value and the scaled distance and the energy absorption of each fabric in the hybrid stacked fabrics were obtained that can evaluate the anti-blast ability of the fabrics. The results show that the three kinds of fabrics exhibit different degrees of strain rate sensitivity. The failure strain and ultimate strength of aramid and ultra-high molecular weight polyethylene (UHMWPE) fiber fabrics under high strain rate load increase with the increase of strain rate, showing obvious strain rate effect. The ultimate strength of carbon fiber fabric increases slightly, and the strain rate effect is not obvious. The numerical analysis has obtained the same failure modes of the fiber fabric as the test: Central hole and simply supported boundary tearing. In the studied working conditions, the deformation peak value of the fabric is inversely proportional to the proportional distance, and the back burst surface fabric fails when the deformation peak value exceeds 39 mm. The specific energy absorption of the UHMWPE fiber fabric reaches 24.7 J/g, which is 4.3 times and 8.5 times that of aramid fabric and carbon fiber fabric.
  • 高性能热塑性复合材料具有能够快速成型、原材料可无限期存贮、制件可多次加热成型、废旧制件可回收利用等优点[1-3],符合经济型、环保性的发展要求,成为各个国家高端复合材料领域研究和发展的重点[4]。早在上个世纪80年代[5],国外科研院所、企业等在热塑性复合材料的应用方面投入了大量的研发力量[6],经过多年的发展,国外热塑性复合材料在军用、民用航空的应用已完成从飞机内饰、舱门、口盖、整流罩等非承力部件到飞机固定面前后缘、襟翼、副翼、方向舵等受载较小部位[7],再到机翼盒段、机身壁板、蒙皮等主承力结构的转变[8]。高性能热塑性复合材料的实际应用取得了显著的效果,有效弥补了热固性复合材料制造和使用过程中面临的诸多问题。

    高性能热塑性复合材料中,碳纤维增强聚芳醚酮(CF/PAEK)复合材料,具有优异的韧性[9]、耐老化性能及耐疲劳性能[10],使CF/PAEK热塑性复合材料得以替代部分传统热固性复合材料,在航空、航天等领域取得成功应用,但是在使用的过程中仍然面临损伤、失效的风险。复合材料典型损伤模式包括层内损伤和层间损伤,层内损伤如基体开裂、纤维与基体脱粘和纤维断裂等,层间损伤如层间脱粘等[11],因此,复合材料的界面性能及层间性能得到了研究者们的关注。Lu等[12]研究了CCF300碳纤维与不同树脂基体间的界面剪切强度,结果显示聚醚醚酮(Polyetheretherketone,PEEK)与碳纤维间的界面强度约为44.87 MPa;一些研究者认为由于PEEK链惰性和碳纤维表面能较低,导致界面强度稍低,复合材料的界面强度仍然有提升的空间,Su等[13]采用碳纳米管优化了CF/PEEK复合材料的层间剪切性能,将复合材料的短梁剪切强度提高35.8%;Yan等[14]研制了水溶性胺化聚醚醚酮(PEEK-NH2)上浆剂将CF/PEEK复合材料的层间剪切强度提高了43.1%;除此之外,成型工艺也能够影响复合材料的界面及层间性能,Wu等[15]研究了孔隙率及树脂结晶度对CF/PEEK复合材料的层间剪切性能的影响,结果显示较低的孔隙率和较高的结晶度能够提高复合材料的层间剪切性能;史如静等[16]研究了成型工艺参数对CF/PEEK复合材料Ⅰ型断裂性能的影响,结果显示较高的成型温度、适当的成型压力及较快的降温速率能够提高复合材料的Ⅰ型断裂韧性。上述研究主要集中于研究工艺条件对复合材料性能的影响,而对树脂基体的特性对复合材料性能的影响研究较少,Chen等[17]研究了不同流动性能的PEEK树脂的流变行为,并根据结果优化了PEEK树脂基体对碳纤维的浸渍参数,并测试了优化浸渍参数后的复合材料的力学性能,但并未对比具有不同流动性能的PEEK基复合材料的力学性能。

    本文中使用具有不同特性的PAEK树脂基体和国产T300级SCF35碳纤维制备了连续碳纤维增强PAEK热塑性复合材料,以微球脱粘性能、90°拉伸性能、短梁剪切性能、Ⅰ型断裂韧性、Ⅱ型断裂韧性为指标,研究了树脂基体的特性对复合材料的界面性能和层间性能的影响,为航空、航天领域所用轻质高强复合材料的设计和制造提供了选材参考。

    基体树脂为汤原县海瑞特工程塑料有限公司生产的聚芳醚酮(Polyaryletherketone,PAEK)树脂,其中流动性稍低的树脂基体牌号为PAEK-L,流动性稍高的树脂基体牌号为PAEK-H,树脂基体的性能如表1所示;碳纤维为中国石化上海石油化工股份有限公司生产的T300级碳纤维,牌号为SCF35,碳纤维性能如表2所示,表面形貌如图1所示;热塑性单向预浸料由黑龙江英创新材料有限公司生产,牌号分别为SCF35/PAEK-L及SCF35/PAEK-H,预浸料的纤维面密度约为147 g/m2,纤维体积分数约为52vol%,树脂质量分数约为40wt%。

    表  1  聚芳醚酮(PAEK)树脂基体的性能
    Table  1.  Properties of poly aryl ether ketone (PAEK) resin matrix
    Property Tensile
    strength/MPa
    Tensile
    modulus/GPa
    Elongation/% Notched impact
    strength/(kJ∙m–2)
    Apparent viscosity
    (360℃)/(Pa·s)
    PAEK-L 96±0.5 4.0±0.2 109±7.2 5.7±0.2 1139
    PAEK-H 95±0.5 3.9±0.2 101±4.4 5.7±0.2 399
    Notes: PAEK-L—Low flow poly aryl ether ketone resin matrix; PAEK-H—High flow poly aryl ether ketone resin matrix.
    下载: 导出CSV 
    | 显示表格
    表  2  国产T300级碳纤维(SCF35)的性能
    Table  2.  Properties of domestic T300 grade carbon fiber (SCF35)
    FibreSpecificationTensile strength
    /MPa
    Tensile modulus
    /GPa
    Elongation
    /%
    Bulk density
    /(g∙cm−3)
    Linear density
    /(g∙m−1)
    SCF3512 K43002301.851.80.8
    下载: 导出CSV 
    | 显示表格
    图  1  SCF35碳纤维表面形貌
    Figure  1.  Surface morphology of SCF35 carbon fiber

    采用模压成型的方法制备复合材料层压板,首先将预浸料裁切成所需的长度规格,采用超声波焊机将预浸料铺贴为预成型体,然后将预制体放入高温脱模剂处理后的模具型腔,最后将模具放入平板硫化仪(LSVI-50 T,广州市普同实验分析仪器有限公司)进行模压成型,成型工艺如图2所示,图2(a)为薄板成型工艺,适用于铺层方式为[0°]14的90°拉伸试样;图2(b)为厚板成型工艺,适用于断裂韧性试样及铺层方式为[0°]42的短梁剪切试样。上述断裂韧性试样所用层压板的铺层方式为[0°]24,预制体中间层铺放厚度为0.03 mm的聚酰亚胺胶带作为预制缺陷,如图3所示。

    图  2  SCF35/PAEK复合材料成型工艺:(a) 薄板成型工艺;(b) 厚板成型工艺
    Figure  2.  Forming process of SCF35/PAEK composite: (a) Thin plate forming process; (b) Thick plate forming process
    图  3  预制缺陷层压板的铺层示意图
    Figure  3.  Schematic diagram of laying of prefabricated defective laminates

    SCF35碳纤维与聚芳醚酮(PAEK)树脂间界面强度的测试,采用微球脱粘实验测试纤维与树脂间的界面强度,所用设备为日本东荣株式会社生产的复合材料界面性能评价装置,设备型号为HM410。测试过程中首先将PAEK树脂330℃熔融成球,然后使树脂浸润单根纤维约10 s,待挂在纤维上的树脂由于表面张力形成微球后,再使用树脂熔体蘸取纤维表面上多余的树脂,将纤维上挂载的小球修理至长度为40~60 μm的小球,随后将纤维和树脂在330℃下保温10 min使树脂充分浸润纤维,最后将保温后的样品冷却至室温进行测试,测试原理如图4所示,界面剪切强度的计算公式如下所示:

    图  4  微球脱粘试验示意图
    Figure  4.  Schematic diagram of microsphere debonding test
    τ=Fmaxπdl (1)

    式中:τ为平均剪切强度;Fmax为小球剥脱时的力;d为纤维直径;l为纤维埋入树脂中的长度。

    SCF35/PAEK复合材料的力学性能采用美国英斯特朗公司生产的万用材料试验机进行测试,设备型号为Instron 5982,90°拉伸性能采用测试标准ASTM D3039/D3039 M-14[18],测试样条尺寸为175 mm×25 mm×2 mm,测试加载速度为2 mm/min,90°拉伸强度计算公式如下所示:

    σt=Pbd (2)

    式中:σt为极限拉伸强度;P为破坏前最大载荷;b为试样宽度;d为试样厚度。

    复合材料的短梁剪切性能测试采用标准ASTM D2344/D2344 M-16[19],试样长度∶跨距∶宽度∶厚度=6∶4∶2∶1,SCF35/PAEK-L的试样尺寸为36.6 mm×12.2 mm×6.1 mm,SCF35/PAEK-H的试样尺寸为35.4 mm×11.8 mm×5.9 mm,测试过程中加载头的半径为3.0 mm,支座的半径为1.5 mm,试样加载速度为1.0 mm/min,短梁剪切强度计算公式如下所示:

    Fsbs=0.75Pmbd (3)

    式中:Fsbs为短梁剪切强度;Pm为试样破坏的最大载荷;b为试样宽度;d为试样厚度。

    Ⅰ型断裂韧性采用测试标准ASTM D5528/D5528 M-21[20],试样的尺寸为180 mm×25 mm,预制裂纹长度约为50 mm,测试过程中加载速度为2.0 mm/min,Ⅰ型断裂韧性的计算公式如下所示:

    GIC=nPδ2ba (4)

    式中:GIC为Ⅰ型断裂韧性;n为柔度标定系数,是lg(δi/Pi)与lg(ai)的最小二乘法拟合的直线斜率;i为测试过程中的取样点;P为裂纹扩展临界载荷;δ为对应于P的加载点位移;a为裂纹长度。

    Ⅱ型断裂韧性采用测试标准ASTM D7905/D7905 M-19[21],采用预制试样的方法进行测试,试样的尺寸为140 mm×25 mm,预制裂纹长度约为40 mm,测试过程中加载速度为2.0 mm/min,Ⅱ型断裂韧性的计算公式如下所示:

    GПC=3mP2Maxa2pc2B

    式中:GПC为Ⅱ型断裂韧性;m为合规校准系数;PMax为载荷的最大值;apc为实际裂纹长度;B为试件宽度。

    除上述测试外,还采用日立Regulus 8230型场发射扫描电子显微镜及浩视RH 8800超景深显微镜对相关试样的微观形貌进行测试表征。

    SCF35/PAEK复合材料的界面性能如表3所示,SCF35碳纤维与低流动性树脂PAEK-L的界面剪切强度约为64 MPa,接触角约为35.8°,90°拉伸强度约为55 MPa,90°拉伸模量约为8.6 GPa,短梁剪切强度约为86 MPa;SCF35碳纤维与高流动性树脂PAEK-H的界面剪切强度约为79 MPa,接触角约为34.4°,90°拉伸强度约为76 MPa,90°拉伸模量约为9.7 GPa,短梁剪切强度约为92 MPa。

    表  3  SCF35/PAEK复合材料的界面性能
    Table  3.  Interfacial properties of SCF35/PAEK composites
    SystemInterfacial shear
    strength/MPa
    Contact angle/
    (°)
    90° tensile
    strength/MPa
    90° tensile
    modulus/GPa
    Short beam shear
    strength/MPa
    SCF35/PAEK-L64±3.435.8±1.055±2.98.6±0.186±1.9
    SCF35/PAEK-H79±6.034.4±3.076±5.49.7±0.492±1.4
    下载: 导出CSV 
    | 显示表格

    SCF35/PAEK复合材料界面剪切测试后,树脂剥脱后的表面形貌如图5所示,微球脱粘的截面形貌如图6所示,纤维与树脂间的接触角如图7所示。图5(a)中PAEK-L微球剥脱的前端呈现撕裂状,后端树脂呈现整体剥脱状;图5(b)中PAEK-H微球剥脱的前端和后端均呈现撕裂状。图6(a)中SCF35/PAEK-L复合材料界面处存在空隙,而图6(b)中SCF35/PAEK-H复合材料界面处树脂基体与纤维结合紧密。图7(a)中PAEK-L树脂在表面张力的作用下在纤维上形成独立的树脂微球,而图7(b)中PAEK-H树脂与纤维结合较紧密,出现树脂粘连、不能形成微球的现象,出现这种现象的原因是,在没有额外压力的作用下,树脂对带有沟槽的SCF35碳纤维浸润的驱动力主要来自于毛细管压力[22],流动性低的PAEK-L树脂具有较高的内摩擦阻力,毛细管压力不足以克服树脂的内摩擦阻力[23],树脂液滴与空气界面处的树脂分子不能克服自由能势垒[24],无法彻底的将纤维表面的沟槽浸润,从而与纤维表面沟槽形成Cassie接触状态[25],并且在表面张力的作用下,团聚成为独立的树脂微球;PAEK-H树脂基体具有较高的流动性能,即较低的内摩擦阻力,因此在毛细管压力的作用下,树脂液滴与空气界面处的树脂分子能够克服自由能势垒与纤维表面沟槽接触并发生黏附,形成Wenzel接触状态[26]。上述结果说明,造成SCF35/PAEK-L界面强度稍低于SCF35/PAEK-H的原因是PAEK-H树脂的流动性较好,能够与带有沟槽的SCF35碳纤维形成较好的结合能力。

    图  5  SCF35/PAEK微球脱粘的表面形貌:(a) SCF35/PAEK-L:(1) 整体形貌、(2) 微球脱粘的示意图、(3) 微球脱粘的前端形貌、(4) 微球脱粘的后端形貌;(b) SCF35/PAEK-H:(1) 整体形貌、(2) 微球脱粘的示意图、(3) 微球脱粘的前端形貌、(4) 微球脱粘的后端形貌
    Figure  5.  Surface morphologies of SCF35/PAEK microsphere debonding: (a) SCF35/PAEK-L: (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding; (b) SCF35/PAEK-H: (1) Overall Shape, (2) Schematic diagram of microsphere debonding, (3) Shape of the front end of microsphere debonding, (4) Shape of the back end of microsphere debonding
    图  6  SCF35/PAEK微球脱粘的截面形貌:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H
    Figure  6.  Cross-sectional morphologies of SCF35/PAEK microsphere debonding: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H
    图  7  SCF35/PAEK间的接触角
    Figure  7.  Contact angle between SCF35/PAEK

    SCF35/PAEK复合材料的90°拉伸测试的破坏形貌如图8所示,可以看出,SCF35/PAEK-L复合材料的90°拉伸试样破坏后,在纤维表面存在不均匀分布的残留树脂;SCF35/PAEK-H复合材料的90°拉伸试样破坏后,纤维被树脂基体均匀包覆。造成复合材料界面呈现不同的破坏模式的原因是PAEK-H树脂基体相较于PAEK-L树脂基体具有较高的流动性,能够填充SCF35碳纤维表面的微小沟槽,形成较强的机械啮合作用,进而表现出较高的界面强度,破坏的过程中界面强度大于树脂的断裂强度时,裂纹在树脂基体中扩展,纤维表面粘连较多的树脂基体。

    图  8  SCF35/PAEK复合材料90°拉伸破坏形貌:(a) SCF35/PAEK-L;(b) SCF35/PAEK-H
    Figure  8.  90° tensile damage morphologies of SCF35/PAEK composite: (a) SCF35/PAEK-L; (b) SCF35/PAEK-H

    SCF35/PAEK热塑性复合材料短梁剪切测试的典型应力-应变结果如图9所示。相同的铺层条件下,SCF35/PAEK-H复合材料的短梁剪切强度略大于SCF35/PAEK-L,SCF35/PAEK-L试样达到最大载荷后,出现了载荷突降的现象,随着应变的增加,试样被迅速破坏,载荷快速下降;SCF35/PAEK-H试样的载荷达到最大值前缓慢增加,存在明显的屈服行为,试样的载荷在到达最大值后,试样通常出现一段载荷下降的过程,然后随着剪切形变量的增加,试样发生剪切破坏。

    图  9  SCF35/PAEK短梁剪切的典型应力-应变曲线
    Figure  9.  Typical stress-strain curves of SCF35/PAEK short beam shear

    复合材料短梁剪切的截面形貌如图10所示,试样中压头下方的受载区域呈现锥形塑性变形,在剪切力的作用下塑性变形区域边缘萌生裂纹并发生裂纹扩展。短梁剪切试样压头处的表面形貌如图11所示,试样在压头施加的载荷的作用下呈现圆弧形的塑性变形,图11(a)中SCF35/PAEK-L复合材料表面较光滑,纤维随树脂的塑性变形发生弯曲,图11(b)中SCF35/PAEK-H复合材料表面存在纤维断裂痕迹,纤维随树脂的塑性变形发生弯曲与断裂。结合图9图10图11,分析造成短梁剪切强度出现差异的原因是,SCF35/PAEK-L复合材料的界面强度稍弱,试样在加载的过程中,复合材料中的纤维在稍低的载荷下发生滑移,导致试样的载荷降低,随着应变的增加,进而萌生裂纹并发生扩展;SCF35/PAEK-H复合材料的界面强度稍强,试样在加载的过程中,复合材料中的纤维较难发生滑移,而是随着试样应变的增加出现纤维弯曲、基体屈服等非线性硬化的效应[11],进而能够承受更高的载荷,当试样的应变达到极限时,试样在剪应力的作用下萌生裂纹并最终发生断裂。

    图  10  SCF35/PAEK短梁剪切的截面形貌
    Figure  10.  Cross-sectional morphologies of SCF35/PAEK short beam shear
    图  11  SCF35/PAEK短梁剪切的表面形貌
    Figure  11.  Surface morphologies of SCF35/PAEK short beam shear

    连续纤维增强树脂基复合材料中重要的破坏模式是层间破坏,SCF35/PAEK复合材料的层间性能如表4所示。其中SCF35/PAEK-L的Ⅰ型断裂韧性约为938 J/m2,Ⅱ型断裂韧性约为2232 J/m2;SCF35/PAEK-H的Ⅰ型断裂韧性约为638 J/m2,Ⅱ型断裂韧性约为1702 J/m2

    表  4  SCF35/PAEK复合材料的断裂韧性
    Table  4.  Fracture toughness of SCF35/PAEK composites
    SystemGIC/(J∙m−2)GIIC/(J∙m−2)
    SCF35/PAEK-L938±382232±208
    SCF35/PAEK-H638±381702±46
    Notes: GIC—Type I fracture toughness of SCF35/PAEK composites; GIIC—Type Ⅱ fracture toughness of SCF35/PAEK composites.
    下载: 导出CSV 
    | 显示表格

    对比两种复合材料体系的典型加载曲线如图12所示,结果显示SCF35/PAEK-L复合材料的破坏载荷及其破坏曲线包络的面积均高于SCF35/PAEK-H复合材料,证明SCF35/PAEK-L复合材料的断裂韧性较高。两种复合材料体系的断裂形貌如图13所示,可以看出,SCF35/PAEK-L复合材料中树脂基体均呈现撕裂状,在Ⅱ型断裂韧性试样中树脂基体在剪切应力的作用下沿剪切力方向撕裂破坏;SCF35/PAEK-H复合材料中树脂基体同样呈现撕裂状,但不同的是,SCF35/PAEK-H复合材料中树脂基体撕裂的尺寸较小。研究认为复合材料层间断裂韧性是基体延展性和界面结合强度之间复杂相互作用的结果,而基体的塑性变形能力是影响复合材料韧性的主要因素[27]图14表1中冲击试样及拉伸试样的破坏形貌。可以看出PAEK-L树脂试样的冲击断面形貌相对于PAEK-H树脂试样具有更大尺寸的断裂变形,PAEK-L树脂试样拉伸断面处存在因塑性变形而产生的齿状树脂残留,而PAEK-H树脂试样拉伸断面处存在片状树脂残留,对比两种树脂试样的断裂形貌及复合材料的断裂形貌可以发现,复合材料中PAEK-L树脂基体较大撕裂形貌将导致复合材料在破坏的过程中消耗更多的能量[28],这是造成SCF35/PAEK-L复合材料断裂韧性较高的原因。

    图  12  SCF35/PAEK典型断裂韧性曲线:(a) Ⅰ型断裂韧性;(b) Ⅱ型断裂韧性
    Figure  12.  Typical fracture toughness curves of SCF35/PAEK: (a) Type I fracture toughness; (b) Type II fracture toughness
    图  13  SCF35/PAEK断裂形貌:(a) SCF35/PAEK-L Ⅰ型断裂形貌;(b) SCF35/PAEK-L Ⅱ型断裂形貌;(c) SCF35/PAEK-H Ⅰ型断裂形貌;(d) SCF35/PAEK-H Ⅱ型断裂形貌
    Figure  13.  Fracture morphology of SCF35/PAEK: (a) Type I fracture morphology of SCF35/PAEK-L; (b) Type Ⅱ fracture morphology of SCF35/PAEK-L; (c) Type I fracture morphology of SCF35/PAEK-H; (d) Type Ⅱ fracture morphology of SCF35/PAEK-H
    图  14  PAEK树脂试样断裂形貌:(a) PAEK-L冲击断面形貌;(b) PAEK-L拉伸断面形貌;(c) PAEK-H冲击断面形貌;(d) PAEK-H拉伸断面形貌
    Figure  14.  Fracture morphology of PAEK resin specimens: (a) Impact section morphology of PAEK-L; (b) Tensile section morphology of PAEK-L; (c) Impact section morphology of PAEK-H; (d) Tensile section morphology of PAEK-H

    (1) 国产碳纤维增强聚芳醚酮(SCF35/PAEK)复合材料的界面性能受到树脂基体流动性的影响,流动性较高的PAEK-H树脂能够与纤维之间形成较好的界面结合及较高的界面强度。SCF35/PAEK-L的界面剪切强度约为64 MPa,接触角约为35.8°,90°拉伸强度约为55 MPa,90°拉伸模量约约为8.6 GPa,短梁剪切强度约为86 MPa;SCF35/PAEK-H的界面剪切强度约为79 MPa,接触角约为34.4°,90°拉伸强度约为76 MPa,90°拉伸模量约为9.7 GPa,短梁剪切强度约为92 MPa。

    (2) SCF35/PAEK复合材料的层间性能受到树脂基体塑性变形能力的影响,基体塑性变形能力较强的PAEK-L相较于PAEK-H,其复合材料具有较高的断裂韧性。SCF35/PAEK-L的Ⅰ型断裂韧性约为938 J/m2,Ⅱ型断裂韧性约为2232 J/m2;SCF35/PAEK-H的Ⅰ型断裂韧性约为638 J/m2,Ⅱ型断裂韧性约为1702 J/m2

  • 图  1   干布模型典型的应力-应变曲线

    Figure  1.   Stress-strain curve for *MAT_DRY_FABRIC

    图  2   准静态拉伸试件

    Figure  2.   Specimen for quasi-static tensile test

    图  3   动态拉伸试件

    Figure  3.   Specimen for dynamic tensile test

    图  4   3种织物典型的应力-应变曲线

    Figure  4.   Typical stress-strain curves of three kinds of fabric

    图  5   动态拉伸试验前后3种织物试件对比

    Figure  5.   Comparison of three kinds of fabric test pieces before and after dynamic tensile test

    图  6   不同应变率下3种织物的应力-应变曲线

    Figure  6.   Stress-strain curves of three kinds of fabric under different strain rates

    图  7   3种织物应变率参数随应变率的变化关系

    Figure  7.   Relationship between strain rate parameters of three kinds of fabric and strain rate

    C-S—Cowper-Symonds

    图  8   纤维织物爆炸冲击有限元模型

    Figure  8.   Finite element model of blast impact of fiber fabric

    TNT—Trinitrotoluene

    图  9   各比例距离下的超压峰值对比

    Figure  9.   Comparison of peak overpressure at each scaled distance

    图  10   在30 g TNT当量、200 mm爆距、3.1 mm厚纤维织物工况下,织物中心点最大位移随网格尺寸的变化规律

    Figure  10.   Maximum displacement of the fabric center point varies with the grid size under the working condition of 30 g TNT equivalent, 200 mm stand-off distance and 3.1 mm thick fabric

    图  11   20 g TNT、150 mm爆距工况冲击过程:((a)~(c)) 数值模拟中的动态响应过程; ((d)~(f)) 试验中的动态响应过程

    Figure  11.   Impact process of 150 mm stand-off distance with 20 g TNT: ((a)-(c)) Dynamic response process in numerical simulation; ((d)-(f)) Dynamic response process in test

    图  12   60 g TNT、100 mm爆距工况冲击过程:((a)~(c)) 数值模拟中的动态响应过程; ((d)~(f)) 试验中的动态响应过程

    Figure  12.   Impact process of 100 mm stand-off distance with 60 g TNT: ((a)-(c)) Dynamic response process in numerical simulation; ((d)-(f)) Dynamic response process in test

    图  13   增加3.1 mm厚织物层前后测点超压时程曲线对比

    Figure  13.   Comparison of time history curves of overpressure at measuring points before and after adding 3.1 mm thick hybrid fabric

    图  14   9.3 mm厚混杂织物在100 g TNT、100 mm爆距下的失效模式

    Figure  14.   Failure mode of 9.3 mm thick hybrid fabric under 100 g TNT and 100 mm stand-off distance

    图  15   3.1 mm厚混杂织物在60 g TNT、100 mm爆距下的失效模式

    Figure  15.   Failure mode of 3.1 mm thick hybrid fabric under 60 g TNT and 100 mm stand-off distance

    图  16   3.1 mm厚混杂织物在60 g TNT、100 mm爆距工况下的应变云图

    Figure  16.   Strain cloud diagram of 3.1 mm thick hybrid fabric under 60 gTNT and 100 mm stand-off distance

    图  17   各厚度织物变形峰值与比例距离关系

    Figure  17.   Relationship between peak deformation and scaled distance of fabrics of each thickness

    图  18   3种织物能量吸收情况

    Figure  18.   Energy absorption of three kinds of fabric

    表  1   各织物的主要物理参数

    Table  1   Main physical parameters of each fabric

    MaterialAramid fiber fabricCarbon fiber fabricUHMWPE
    GradeF-268HF30S-12KZTZ 24
    Yarn density/(g·(1000 m)−1)166800126±10
    Yarn body density/(g·cm−3)1.441.80.97
    Yarn breaking elongation/%≥3.21.7-2.23-3.5
    Yarn tensile modulus/GPa≥125245-270105-110
    Fabric thickness/mm0.30.550.55
    Fabric density/(yarns·(10 cm)−1)65×6530×3087×87
    Fabric surface density/(g·m−2)210-220480235-245
    Note: UHMWPE—Ultra-high molecular weight polyethylene.
    下载: 导出CSV

    表  2   织物经向和纬向参数

    Table  2   Warp and weft parameters of each fabric

    Test piecePeak load
    /N
    Ultimate strength
    /MPa
    Elastic modulus
    /MPa
    Elongation
    /mm
    Elongation at break
    /%
    F-268 warp4287.42076.368230.46.933.47
    F-268 weft4248.42061.668643.66.813.41
    HF30S-12K warp9931.82562.9142959.94.922.46
    HF30S-12K weft8999.82318.8139591.34.792.40
    ZTZ 24 warp9630.42500.847179.113.516.76
    ZTZ 24 weft9455.62473.446704.113.356.68
    下载: 导出CSV

    表  3   3种织物的材料模型参数输入值

    Table  3   Input values of material model parameters of three kinds of fabric

    ParameterF-268HF30S-12KZTZ 24
    Density Ro/(g·mm−3)7.2×10−48×10−44×10−4
    Warp fiber elastic modulus Ea/MPa68230.4142959.947179.1
    Weft fiber elastic modulus Eb/MPa68643.6139591.346704.1
    Elastic modulus coefficient of warp crimp zone Ea,crf0.0410.1500.275
    Elastic modulus coefficient of weft crimp zone Eb,crf0.0410.1500.275
    Critical strain in warp crimp zone Ea,crp0.0050.0030.024
    Critical strain in the zonal crimp zone Eb,crp0.0050.0030.024
    Modulus of elasticity coefficient in meridional post-peak region Ea,sf−3.06−1.6−1.3
    Elastic modulus coefficient in the weft post-peak zone Eb,sf−3.06−1.6−1.3
    Peak warp strain εa,max0.0340.0210.074
    Peak weft strain εb,max0.0340.0210.074
    Initial stress in nonlinear region SIGPOST/MPa92.7553656.9
    Strain rate parameter C188103190
    Strain rate parameter P5.833.28.5
    Warp failure strain εa,fail0.200.250.40
    Weft failure strain εb,fail0.200.250.40
    下载: 导出CSV

    表  4   TNT参数

    Table  4   Parameters of TNT

    ParameterValue
    Density/(103 kg·m−3)1.63
    Detonation velocity/(m·s−1)6930
    Detonation pressure/GPa21
    A/GPa374
    B/GPa3.74
    R14.15
    R21.4
    ω0.35
    E/(103 MJ·m−3)7
    Notes: A, B, R1, R2, ω—Constants characterizing TNT properties; E—Detonation energy per unit volume.
    下载: 导出CSV

    表  5   空气参数

    Table  5   Parameters of air

    ParameterValue
    Density/(kg·m−3)1.29
    C40.4
    C50.4
    C0,C1,C2,C3,C60
    E0/(MJ·m−3)0.25
    Notes: C0-C6—Polynomial equation coefficients; E0—Initial internal energy.
    下载: 导出CSV

    表  6   不同比例距离Z下的超压峰值

    Table  6   Peak overpressure at different scaled distances Z

    Z
    /(m·kg−1/3)
    Test
    /kPa
    Empirical formula
    /kPa
    Simulation
    /
    kPa
    1.85175.3218.3168.3
    1.47411.5374.3347.8
    1.28585.1524.9521.6
    1.08856.5805.0864.0
    1.00878.3970.0960.2
    下载: 导出CSV

    表  7   各厚度织物在不同比例距离下的变形峰值

    Table  7   Deformation peak values of fabrics of each thickness at different scaled distances

    Thickness of
    fabric/mm
    Stand-off
    distance/
    mm
    TNT mass/gZ/
    (m·kg−1/3)
    Maximum
    deformation/
    mm
    100 60 0.255 Failure
    150 60 0.384 39.4
    200 60 0.51 36.1
    3.1 200 20 0.74 34.0
    300 20 1.1 32.5
    300 10 1.4 30.1
    100 80 0.232 Failure
    100 60 0.255 39.7
    150 60 0.384 37.9
    6.2 200 60 0.51 34.8
    200 20 0.74 31.0
    300 20 1.1 29.0
    300 10 1.4 27.3
    100 80 0.232 Failure
    100 60 0.255 38.3
    150 60 0.384 34.6
    9.3 200 60 0.51 33.8
    200 20 0.74 27.9
    300 20 1.1 25.5
    300 10 1.4 23.9
    100 150 0.19 Failure
    100 120 0.203 38.1
    100 100 0.215 35.8
    100 60 0.255 34.0
    12.4 150 60 0.384 31.4
    200 60 0.51 29.6
    200 20 0.74 25.2
    300 20 1.1 22.9
    300 10 1.4 17.7
    下载: 导出CSV
  • [1]

    Federal Aviation Administration. Security considerations requirements for transport category airplanes: Far part 25 amendment No: 25-127[S]. Washington: Federal Aviation Administration, 2008.

    [2]

    Federal Aviation Administration. Least risk bomb location: FAA AC 25.795-6[S]. Washington: Federal Aviation Administration, 2008.

    [3]

    LANGDON G S, CANTWELL W J, GUAN Z W, et al. The response of polymeric composite structures to air-blast loading: A state-of-the-art[J]. International Materials Reviews,2014,59(3):159-177. DOI: 10.1179/1743280413Y.0000000028

    [4]

    YANG C C, NGO T, TRAN P. Influences of weaving architectures on the impact resistance of multi-layer fabrics[J]. Materials and Design,2015,85:282-295. DOI: 10.1016/j.matdes.2015.07.014

    [5] 翁浦莹. STF-Kevlar、UHMWPE织物复合形式及其防弹性能研究[D]. 杭州: 浙江理工大学, 2015.

    WENG Puying. Study on the composite form of STF-Kevlar and UHMWPE fabrics and their ballistic performance[D]. Hangzhou: Zhejiang Sci-Tech University, 2015(in Chinese).

    [6]

    ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Ballistic impact mechanisms—A review on textiles and fibre reinforced composites impact responses[J]. Composite Structures,2019,223:110966. DOI: 10.1016/j.compstruct.2019.110966

    [7] 陈晓钢. 纺织基防弹防穿刺材料的研究回顾[J]. 纺织学报, 2019, 40(6):158-164. DOI: 10.13475/j.fzxb.20190204507

    CHEN Xiaogang. Review of research on textile-based bullet-proof and puncture-proof materials[J]. Journal of Textile Research,2019,40(6):158-164(in Chinese). DOI: 10.13475/j.fzxb.20190204507

    [8] 何业茂, 焦亚男, 周庆, 等. 弹道防护用先进复合材料弹道响应的研究进展[J]. 复合材料学报, 2021, 38(5):1331-1347. DOI: 10.13801/j.cnki.fhclxb.20201201.004

    HE Yemao, JIAO Ya'nan, ZHOU Qing, et al. Research progress on ballistic response of advanced composite for ballistic protection[J]. Acta Materiae Compositae Sinica,2021,38(5):1331-1347(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20201201.004

    [9]

    YANG Y F, CHEN X G. Investigation of energy absorption mechanisms in a soft armor panel under ballistic impact[J]. Textile Research Journal,2017,87(20):2475-2486. DOI: 10.1177/0040517516671129

    [10]

    YANG Y F, CHEN X G. Investigation of failure modes and influence on ballistic performance of ultra-high molecular weight polyethylene (UHMWPE) uni-directional laminate for hybrid design[J]. Composite Structures,2017,174(8):233-243. DOI: 10.1016/j.compstruct.2017.04.033

    [11]

    YANG Y F, CHEN X G. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact[J]. Composite Structures,2019,224(9):111015. DOI: 10.1016/j.compstruct.2019.111015

    [12]

    ZHAO Y, CAO M, TAN H X, et al. Hybrid woven carbon-dyneema composites under drop-weight and steel ball impact[J]. Composite Structures,2019,236:111811. DOI: 10.1016/j.compstruct.2019.111811

    [13] 袁子舜, 陆振乾, 许玥, 等. 超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制[J]. 复合材料学报, 2022, 39(6):2707-2715. DOI: 10.13801/j.cnki.fhclxb.20210625.001

    YUAN Zishun, LU Zhenqian, XU Yue, et al. Ballistic mechanism of the hybrid panels with UHMWPE woven fabrics and UD laminates[J]. Acta Materiae Compositae Sinica,2022,39(6):2707-2715(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210625.001

    [14] 赵敏, 赵睿昕, 沈永明, 等. CFR嵌片对超高分子质量聚乙烯多层复合织物防爆性能的影响[J]. 纺织学报, 2014, 35(3):37-40.

    ZHAO Min, ZHAO Ruixin, SHEN Yongming, et al. Influence of CFR insert on explosion-proof performance of UHMWPE multi-compound fabric[J]. Journal of Textile Research,2014,35(3):37-40(in Chinese).

    [15]

    ZHANG Y, YAN D J, NIAN X Z, et al. Numerical analysis of rigid and flexible reflection of air shock wave[J]. Applied Mechanics Materials,2014,638-640:2010-2014. DOI: 10.4028/www.scientific.net/AMM.638-640.2010

    [16]

    ZHANG B, NIAN X Z, JIN F N, et al. Failure analyses of flexible ultra-high molecular weight polyethylene (UHMWPE) fiber reinforced anti-blast wall under explosion[J]. Composite Structures,2018,184:759-774. DOI: 10.1016/j.compstruct.2017.10.037

    [17]

    MARKERT F, THOMMESEN J. Blastworthy textile-based luggage containers for aviation safety[J]. Safety and security analysis,2011,40:213557.

    [18]

    DONATO Z, SAMUELE A, ALESSANDRO B, et al. Textile-based luggage containers for onboard blast protection[J]. Sae International Journal of Aerospace,2011,4(2):690-698. DOI: 10.4271/2011-01-2517

    [19]

    GIOVANELLE M L. Advanced technologies for bombproof cargo containers and blast containment units for the retrofitting of passenger airplanes[J]. International Journal of Aviation Systems, Operations and Training,2015,2(1):33-47. DOI: 10.4018/IJASOT.2015010103

    [20]

    FILIPPO M, MARIA M P, PAOLO V. Blast actions in aircrafts: An integrated methodology for designing protection devices[J]. Engineering Structures,2018,175:895-911. DOI: 10.1016/j.engstruct.2018.08.082

    [21]

    STANHLECKER Z, MOBASHER B, RAJAN S D. Development of reliable modeling methodologies for engine fan blade out containment analysis: Part II— Finite element analysis[J]. International Journal of Impact Engineering,2009,36(3):447-459. DOI: 10.1016/j.ijimpeng.2008.08.004

    [22] 冯振宇, 裴惠, 迟琪琳, 等. Kevlar织物软壁包容环抗冲击数值仿真分析研究[J]. 振动与冲击, 2020, 39(10):15-23. DOI: 10.13465/j.cnki.jvs.2020.10.003

    FENG Zhenyu, PEI Hui, CHI Qilin, et al. Numerical simulation analysis of impact resistance of Kevlar fabric soft wall containment ring[J]. Vibration and Shock,2020,39(10):15-23(in Chinese). DOI: 10.13465/j.cnki.jvs.2020.10.003

    [23]

    ASTM International. Standard test method for breaking force and elongation of textile fabrics (strip method): ASTM D5035—06[S]. West Conshohocken: ASTM, 2006.

    [24] 中国国家标准化管理委员会. 纺织品织物拉伸性能第1部分: 断裂强力和断裂伸长率的测定(条样法): GB/T 3923.1—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People's Republic of China. Tensile properties of textile fabrics part 1: Determination of breaking strength and breaking elongation (strip method): GB/T 3923.1—2013[S]. Beijing: China Standards Press, 2013(in Chinese).

    [25]

    TAN V, ZENG X S, SHIM V. Characterization and constitutive modeling of aramid fibers at high strain rates[J]. International Journal of Impact Engineering,2008,35(11):1303-1313. DOI: 10.1016/j.ijimpeng.2007.07.010

    [26]

    COWPER G R, SYMONDS P S. Strain hardening and strain rate effect in the impact loading of cantilever beams[D]. Providence: Brown University, 1957.

    [27]

    SADOVSKYI M A. Mechanical action of air shock waves of explosion, based on experimenta data[M]. Moscow: Izd Akad Nauk SSSR, 1952.

  • 期刊类型引用(2)

    1. 冯葆炜,王华清. 层合板和蜂窝夹心结构复合材料敲击特性研究. 新技术新工艺. 2024(02): 56-59 . 百度学术
    2. 顾洋洋,张金栋,刘刚,刘衍腾,甘建,杨曙光. 聚芳醚酮(PAEK)树脂熔体黏度及冲击能量对其复合材料冲击损伤行为的影响. 复合材料学报. 2023(10): 5641-5653 . 本站查看

    其他类型引用(3)

图(18)  /  表(7)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  194
  • PDF下载量:  40
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-08-25
  • 修回日期:  2021-10-16
  • 录用日期:  2021-10-29
  • 网络出版日期:  2021-11-08
  • 刊出日期:  2022-08-21

目录

/

返回文章
返回