Preparation and properties of zeolitic imidazolate framework ZIF-L/PVA composite films
-
摘要: 类沸石咪唑酯骨架材料(ZIFs)因具有独特的结构和功能,使得利用ZIFs增强改性高分子材料的性能,制备新型功能复合材料,日益受到人们的重视。为研究ZIFs对聚乙烯醇(PVA)的增强改性作用,本研究以类沸石咪唑酯骨架ZIF-L为增强剂,采用溶液流延法制备了系列类沸石咪唑酯骨架ZIF-L/PVA复合薄膜,并对复合薄膜的结构、光学性能、力学性能、颜色、阻隔性能及热稳定性进行了表征。结果表明:ZIF-L的加入增强了复合薄膜的抗紫外性能;随着ZIF-L含量的增加,复合薄膜拉伸强度先增大后降低,水蒸气透过率及最大热分解温度先降低后升高,氧气透过量逐渐增大。当ZIF-L的质量分数为1wt%时,拉伸强度可提高约15%,水蒸气透过率降低1.8%,ZIF-L对PVA具有明显的增强作用,复合薄膜的综合性能较好;当ZIF-L的质量分数大于5wt%时,复合薄膜的最大热分解温度开始升高,最高可达297.84℃。制备的ZIF-L增强改性PVA复合材料为新型功能性包装复合薄膜的开发应用提供了有益借鉴。Abstract: Because of the unique structure and function of zeolitic imidazolate frameworks (ZIFs), the utilization of ZIFs to enhance the properties of polymer and prepare new functional composites have attracted growing attention. To clarify the reinforcing effects of ZIFs on poly(vinyl alcohol) (PVA), zeolitic imidazolate framework ZIF-L was used as reinforcer and series of PVA composite films with different concentrations of ZIF-L were prepared by solution casting process. The structure, optical properties, mechanical properties, color, barrier performance and thermostability of the composite films were analyzed. The results indicate that the composite films show an enhanced anti-ultraviolet property with the addition of ZIF-L. The tensile strength initially increases and then decreases with increasing content of ZIF-L while the water vapor permeability and thermal degradation temperature show an opposite tendency. In addition, the incorporation of ZIF-L increases the oxygen permeability of the films gradually. When the ZIF-L content is 1wt%, the tensile strength of the composite film is increased by about 15%, while the water vapor permeability is reduced by 1.8%, ZIF-L significantly enhances the properties of PVA and the composite film show good comprehensive performance. When the ZIF-L content is larger than 5wt%, the maximum decomposition temperature begins to increase and reaches up to 297.84℃. The ZIF-L reinforced PVA composites in the present work will advance the development of new functional packaging composite films.
-
-
表 1 ZIF-L/PVA复合薄膜的光学性能
Table 1 Optical properties of the ZIF-L/PVA composite films
Mass fraction of ZIF-L/wt% Light transmittance/% Haze/% L* a* b* ∆E 0 92.83±0.16a 0.21±0.03e 94.56±0.04b −0.87±0.03bc 1.43±0.01b 2.13±0.04d 1 92.63±0.16a 0.91±0.01d 94.28±0.02c −0.84±0.03ab 1.61±0.01a 2.45±0.02c 5 92.73±0.06a 10.47±0.57c 93.19±0.00e −0.78±0.04a 1.64±0.03a 3.52±0.01a 10 92.73±0.12a 26.61±0.53b 94.07±0.01d −0.93±0.06c 1.14±0.01d 2.60±0.01b 15 91.53±0.16b 59.92±0.08a 95.04±0.06a −0.90±0.02bc 1.29±0.14c 1.65±0.04e Notes: Value(means±stand deviation); Same letters in the column are not significant; P>0.05; L*, a*, b*—Color parameters; L*—Brightness, black-white; a*—Greenness-redness; b*—Blueness-yellowness; ΔE—Total color difference. -
[1] SRIVASTAVA K R, SINGH M K, MISHRA P K, et al. Pretreatment of banana pseudostem fibre for green composite packaging film preparation with polyvinyl alcohol[J]. Journal of Polymer Research,2019,26(4):95. DOI: 10.1007/s10965-019-1751-3
[2] ABDULLAH Z W, DONG Y, DAVIES I J, et al. PVA, PVA blends, and their nanocomposites for biodegradable packaging application[J]. Polymer-Plastics Technology and Engineering,2017,56(12):1307-1344. DOI: 10.1080/03602559.2016.1275684
[3] ASLAM M, KALYAR M A, RAZA Z A. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites[J]. Polymer Engineering and Science,2018,58(12):2119-2132. DOI: 10.1002/pen.24855
[4] 刘超, 董岸杰, 张建华. 改性聚乙烯醇膜的研究进展[J]. 化工进展, 2021, 40(6):3258-3269. LIU Chao, DONG Anjie, ZHANG Jianhua. Research progress of modified polyvinyl alcohol membrane[J]. Chemical Industry and Engineering Progress,2021,40(6):3258-3269(in Chinese).
[5] HUANG J, GUO Q, ZHU R, et al. Facile fabrication of transparent lignin sphere/PVA nanocomposite films with excellent UV-shielding and high strength performance[J]. International Journal of Biological Macromolecules,2021,189:635-640. DOI: 10.1016/j.ijbiomac.2021.08.167
[6] ZHANG Y, REMADEVI R, HINESTROZA J P, et al. Transparent ultraviolet (UV)-shielding films made from waste hemp hurd and polyvinyl alcohol (PVA)[J]. Polymers,2020,12(5):1190. DOI: 10.3390/polym12051190
[7] KUKKAR P, KIM K H, KUKKAR D, et al. Recent advances in the synthesis techniques for zeolitic imidazolate frameworks and their sensing applications[J]. Coordination Chemistry Reviews,2021,446:214109. DOI: 10.1016/j.ccr.2021.214109
[8] ADHIKARI P, LI N, RULIS P, et al. Deformation behavior of an amorphous zeolitic imidazolate framework-from a supersoft material to a complex organometallic alloy[J]. Physical Chemistry Chemical Physics,2018,20(46):29001-29011. DOI: 10.1039/C8CP05610B
[9] KALAJ M, BENTZ K C, AYALA S, et al. MOF-polymer hybrid materials: From simple composites to tailored architectures[J]. Chemical Reviews,2020,120(16):8267-8302. DOI: 10.1021/acs.chemrev.9b00575
[10] ZHANG X, ZHAN Z M, CHENG F Y, et al. Thin-film composite membrane prepared by interfacial polymerization on the integrated ZIF-L nanosheets interface for pervaporation dehydration[J]. ACS Applied Materials & Interfaces,2021,13(33):39819-39830. DOI: 10.1021/acsami.1c09221
[11] 陈赛, 陶丽娟, 李伟, 等. ZIF-8/P(TDA-co-HDA)和PB/P(TDA-co-HDA)形状稳定相变材料的制备与性能表征[J]. 复合材料学报, 2021, 38(11):3912-3919. CHEN Sai, TAO Lijuan, LI Wei, et al. Fabrication and characterization of shape-stabilized phase change materials of ZIF-8/P(TDA-co-HDA) and PB/P(TDA-co-HDA)[J]. Acta Materiae Compositae Sinica,2021,38(11):3912-3919(in Chinese).
[12] LIU G, JIANG Z, CAO K, et al. Pervaporation performance comparison of hybrid membranes filled with two-dimensional ZIF-L nanosheets and zero-dimensional ZIF-8 nanoparticles[J]. Journal of Membrane Science,2017,523:185-196. DOI: 10.1016/j.memsci.2016.09.064
[13] LI H, HAN L, HOU J, et al. Oriented zeolitic imidazolate framework membranes within polymeric matrices for effective N2/CO2 separation[J]. Journal of Membrane Science,2019,572:82-91. DOI: 10.1016/j.memsci.2018.10.086
[14] LIU W, BAN Y, LIU J, et al. ZIF-L based mixed matrix membranes for acetone-butanol-ethanol (ABE) recovery from diluted aqueous solution[J]. Separation and Purification Technology,2021,276:119085. DOI: 10.1016/j.seppur.2021.119085
[15] ŞAHIN F, TOPUZ B, KALıPÇıLAR H. ZIF filled PDMS mixed matrix membranes for separation of solvent vapors from nitrogen[J]. Journal of Membrane Science,2020,598:117792. DOI: 10.1016/j.memsci.2019.117792
[16] LI Z, GOU M, YUE X, et al. Facile fabrication of bifunctional ZIF-L/cellulose composite membrane for efficient removal of tellurium and antibacterial effects[J]. Journal of Hazardous Materials,2021,416:125888. DOI: 10.1016/j.jhazmat.2021.125888
[17] VALENCIA L, ABDELHAMID H. Nanocellulose leaf-like zeolitic imidazolate framework (ZIF-L) foams for selective capture of carbon dioxide[J]. Carbohydrate Polymers,2019,213:338-345. DOI: 10.1016/j.carbpol.2019.03.011
[18] CHEN R, YAO J, GU Q, et al. A two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption[J]. Chemical Communications,2013,49(82):9500-9502. DOI: 10.1039/c3cc44342f
[19] HAGHIGHI H, GULLO M, LA CHINA S, et al. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications[J]. Food Hydrocolloids,2021,113:106454. DOI: 10.1016/j.foodhyd.2020.106454
[20] MAO H, ZHEN H G, AHMAD A, et al. Highly selective and robust PDMS mixed matrix membranes by embedding two-dimensional ZIF-L for alcohol permselective pervaporation[J]. Journal of Membrane Science,2019,582:307-321. DOI: 10.1016/j.memsci.2019.04.022
[21] YANG W, DING H, QI G, et al. Highly transparent PVA/nanolignin composite films with excellent UV shielding, antibacterial and antioxidant performance[J]. Reactive and Functional Polymers,2021,162:104873. DOI: 10.1016/j.reactfunctpolym.2021.104873
[22] FACTORI I M, AMARAL J M, CAMANI P H, et al. ZnO nanoparticle/poly(vinyl alcohol) nanocomposites via microwave-assisted sol-gel synthesis for structural materials, UV shielding, and antimicrobial activity[J]. ACS Applied Nano Materials,2021,4(7):7371-7383. DOI: 10.1021/acsanm.1c01334
[23] KHAN I U, OTHMAN M H D, ISMAIL A, et al. Structural transition from two-dimensional ZIF-L to three-dimensional ZIF-8 nanoparticles in aqueous room temperature synthesis with improved CO2 adsorption[J]. Materials Characterization,2018,136:407-416. DOI: 10.1016/j.matchar.2018.01.003
[24] HE M, YAO J, LIU Q, et al. Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution[J]. Microporous and Mesoporous Materials,2014,184:55-60. DOI: 10.1016/j.micromeso.2013.10.003
[25] ZHANG X, LIU W, LIU W, et al. High performance PVA/lignin nanocomposite films with excellent water vapor barrier and UV-shielding properties[J]. International Journal of Biological Macromolecules,2020,142:551-558. DOI: 10.1016/j.ijbiomac.2019.09.129
[26] 王松, 贾志欣, 周向阳, 等. 埃洛石纳米管/聚乙烯醇-淀粉复合膜的结构与性能[J]. 复合材料学报, 2017, 34(12):2689-2694. WANG Song, JIA Zhixin, ZHOU Xiangyang, et al. Structure and properties of halloysite nanotubes/PVA-starch composite films[J]. Acta Materiae Compositae Sinica,2017,34(12):2689-2694(in Chinese).
[27] LIN C, WANG Q, DENG Q, et al. Preparation of highly hazy transparent cellulose film from dissolving pulp[J]. Cellulose,2019,26:4061-4069. DOI: 10.1007/s10570-019-02367-3
[28] ZHAO Q P, ZHAO D L, CHUNG T S. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination[J]. Journal of Membrane Science,2021,625:119158. DOI: 10.1016/j.memsci.2021.119158
[29] KHAN M, AKTER M, AMIN M K, et al. Synthesis, lumine-scence and thermal properties of PVA-ZnO-Al2O3 composite films: Towards fabrication of sunlight-induced catalyst for organic dye removal[J]. Journal of Polymers and the Environment,2018,26:3371-3381. DOI: 10.1007/s10924-018-1220-9
[30] LEE S, LEI Y, WANG D, et al. The study of zeolitic imidazolate framework (ZIF-8) doped polyvinyl alcohol/starch/methyl cellulose blend film[J]. Polymers,2019,11(12):1986. DOI: 10.3390/polym11121986
[31] BAROOAH M, MANDAL B. Synthesis, characterization and CO2 separation performance of novel PVA/PG/ZIF-8 mixed matrix membrane[J]. Journal of Membrane Science,2019,572:198-209. DOI: 10.1016/j.memsci.2018.11.001
-
期刊类型引用(10)
1. 李晓蕾,赵诗雨,冯雨晴,詹园,孙争光. 高内相乳液模板法制备石墨烯/聚苯乙烯多孔复合材料. 湖北大学学报(自然科学版). 2021(06): 601-605 . 百度学术
2. 冯新慧,李昀,张婷,周晓龙. 大孔微生物载体固定硫酸盐还原菌用于硫酸盐废水处理的研究. 现代化工. 2020(10): 178-183 . 百度学术
3. 张婷,李昀,冯新慧,周晓龙. 大孔磁性聚合物载体的制备及其固定化硫酸盐还原菌的研究. 功能材料. 2019(03): 3090-3095 . 百度学术
4. 肖丽华,鲍文博,金玉宝,卢祥国,郐婧文. 聚合物溶液、凝胶和微球渗流特性差异及其作用机理研究. 油田化学. 2018(02): 241-245+251 . 百度学术
5. 陈博,官成兰,陈学琴,孙争光,江兵兵. 交联剂对聚苯乙烯多孔材料结构及性能的影响. 湖北大学学报(自然科学版). 2017(02): 152-154+160 . 百度学术
6. 陈博,官成兰,陈学琴,孙争光,江兵兵. 聚合物多孔材料的制备及性能研究. 湖北大学学报(自然科学版). 2017(05): 496-499 . 百度学术
7. 陈博,孙争光,任军,张蕾. 高内相乳液模板法制备多孔聚合物复合材料的研究进展. 化工新型材料. 2017(11): 21-24 . 百度学术
8. 官成兰,孙争光,陈博,张玉红,朱杰. 有机硅交联剂对硅树脂/聚苯乙烯多孔复合材料性能的影响. 复合材料学报. 2016(01): 77-83 . 本站查看
9. 陈博,官成兰,邓红照,朱杰,孙争光. 致孔剂对PS/MTQ多孔材料结构及性能的影响. 胶体与聚合物. 2016(04): 175-177 . 百度学术
10. 张爱霞,周勤,陈莉. 2015年国内有机硅进展. 有机硅材料. 2016(03): 249-274 . 百度学术
其他类型引用(8)
-