氧化石墨烯对水泥基复合材料徐变的调控机制

Regulation mechanism of graphene oxide on creep of cement-based composites

  • 摘要: 为了探明氧化石墨烯(GO)对水泥基复合材料徐变的调控机制,采用徐变加载架对不同GO掺量水泥胶砂的徐变进行了测试,并从水泥基复合材料的水化和微观结构入手,采用SEM、XRD、FTIR等研究了GO对水泥胶砂徐变的影响,并对调控机制进行了解释。结果表明:GO可以调节水泥基复合材料水化产物的形状与聚集态,降低宏观徐变。当GO掺量(与水泥质量比)大于0.02%时,水泥胶砂的徐变大幅度降低。GO的掺入促进了水化硅酸钙(CSH)对水分子的吸附与扩散,增加了内部CSH含量,使水化产物的结构更加致密。GO与CSH形成的氢键可提升二者之间的黏结力,并增强水分子在CSH-GO片层间的吸附,从而实现了对水泥胶砂徐变的调控。研究成果对于实现按终端用途进行水泥基复合材料设计具有重要的理论价值,并有望在预应力混凝土结构中得到应用。

     

    Abstract: In order to explore the creep regulation mechanism of graphene oxide (GO) on cement-based composites, the creep of cement mortar with different GO contents was tested by using creep loading frame. Starting from the hydration and microstructure of cement-based composites, the effect of GO on the creep of cement mortar was studied by SEM, XRD and FTIR, and the regulation mechanism was explained. The results show that GO can regulate the shape and aggregation state of hydration products of cement-based composites and reduce macro creep. When the content (mass ratio to cement) of GO is greater than 0.02%, the creep of cement mortar is greatly reduced. The addition of GO promotes the adsorption and diffusion of water molecules by hydrated calcium silicate (CSH), increases the internal CSH content and makes the structure of hydration products more compact. The hydrogen bond formed by GO and CSH can enhance the bonding force between the two and enhance the adsorption of water molecules between the CSH-GO layers, thus realizing the regulation of creep of cement mortar. The results have important theoretical value for the design of cement-based composites according to end use, and are expected to be applied in prestressed concrete structures.

     

/

返回文章
返回