Flexural properties of ultra high performance concrete reinforced with steel wire mesh or fiber mesh
-
摘要: 为研究钢丝网或纤维网对混杂纤维超高性能混凝土(Ultra-high performance concrete,UHPC)板弯曲性能的影响,进行了四边简支双向板弯曲试验。UHPC中短切纤维为:单掺钢纤维、钢纤维分别与聚乙烯醇纤维、玻璃纤维、玄武岩纤维混掺等。研究参数为:钢丝网与玻璃纤维网层数、孔径、混掺纤维比例等。结果表明,单掺体积分数为1.5vol%的钢纤维时,铺设3层和4层钢丝网的UHPC板的极限承载力和25 mm挠度处的能量吸收值较2层分别提升14.9%、32.3%和14.1%、25.2%;孔径较小的钢丝网对UHPC板承载力和韧性提升明显。当混杂纤维总体积分数为1.5vol%且钢丝网2层时,混掺1.0vol%钢纤维和0.5vol%聚乙烯醇纤维对UHPC板增强增韧效果更好,0.5vol%钢纤维与1.0vol%玻璃纤维或玄武岩纤维混掺较0.5vol%钢纤维与1.0vol%聚乙烯醇纤维混掺对改善板峰后持荷能力更有利,即钢纤维与较高弹性模量非金属纤维混掺有利于提高裂后承载力。与玻璃纤维网相比,铺设钢丝网的UHPC板在峰后延性更好。提出了以素UHPC板峰值荷载挠度作为初裂挠度的韧性指标评定方法,该方法可表征网格和纤维对UHPC板裂后韧性的贡献。基于网格有效利用率概念,建立了板抗弯承载力计算方法,理论值与试验值吻合良好。Abstract: To study the influence of steel wire mesh on the bending properties of ultra-high performance concrete (UHPC) slabs, a bending test of simply supported two-way slabs with four sides was carried out. The chopped fibers in UHPC ware: Steel fiber and steel fiber were mixed with polyvinyl alcohol fiber, glass fiber and basalt fiber, respectively. The research parameters were: Number of layers of wire mesh and glass fiber mesh, pore size and proportion of blended fibers. The results show that when UHPC is single-doped with 1.5vol% steel fiber, the ultimate bearing capacity and energy absorption at 25 mm deflection of UHPC slabs with 3 layers and 4 layers are increased by 14.9%, 32.3% and 14.1%, 25.2%, respectively compared with UHPC slabs with 2 layers of steel wire mesh. When the total volume fraction of hybrid fibers is 1.5vol% and the steel wire mesh is 2 layers, the blending of 1.0vol% steel fiber and 0.5vol% polyvinyl alcohol fiber has better reinforcing and toughening effect on UHPC slabs, and the UHPC slab mixed with 0.5vol% steel fiber and 1.0vol% glass fiber or basalt fiber has a stronger ability to maintain load after peak load than 1.0vol% polyvinyl alcohol fiber, namely the mixing of steel fiber with higher modulus of elasticity non-metallic fiber is advantageous to increase the post-cracking bearing capacity. Compared with glass fiber mesh, UHPC slabs with steel mesh have better ductility after peak load. A method for evaluating the flexibility of UHPC slabs with peak load deflection as initial cracking parameter was proposed, which can characterize the contribution of mesh and fibers to the post-crack toughness of UHPC slabs. Based on the concept of effective utilization of mesh, the theoretical value is in good agreement with the experimental value by calculating the bending capacity.
-
Keywords:
- steel mesh /
- two-way slab /
- hybrid fiber /
- hardening index /
- toughness index /
- bending capacity
-
重金属对水环境的污染是当今面临的最严重的一类环境污染,主要由采矿、冶金、电镀、石油化工和纺织业等行业的发展引起的[1-2]。与有机污染物不同,重金属污染具有不可降解性。未经处理的或未处理完全的含重金属废水排放到环境中,会通过生物累积危害到食物链的各环节,破坏生态平衡。Cd(II)是一种典型的毒性极大的重金属离子,美国环保署将其列为B1类致癌物,对人体的肾脏有极大的危害[3-4]。因此,工业废水中Cd(II)的去除是至关重要的。
去除水中Cd(II)常用方法有混凝-絮凝、微生物、膜分离、吸附等。其中吸附法因其效果好、成本低、工艺简单等优点成为最常用的方法[5-8]。海藻酸钠(SA)是一种天然多糖,可与CaCl2溶液交联形成一种吸附性能极好的水凝胶材料—海藻酸钙CaAlg(CA)。以CA为基材的小球在重金属的吸附方面效果显著[9]。氧化石墨烯(GO)是石墨多次化学氧化后得到的含有大量羟基和羧基的常见改性材料。它具有极高的比表面积和电负性,这些特性也使其成为一种理想的重金属离子吸附材料[10]。将SA、致孔剂和GO混合后再与CaCl2交联,GO的含氧基团也能参与到交联过程,从而使三者形成有机统一的多孔材料,而且各组分间的相互作用更强,这对其吸附性能和力学性能都有很大的提升。
在吸附过程,相对于球型吸附剂,膜上的吸附位点能够更准而快地捕捉重金属离子[11]。将GO与致孔剂共混在SA溶液中,与CaCl2交联制得的GO/CA水凝胶复合膜将会是一种优良的重金属离子吸附剂。由于SA良好的成膜性[12],此复合膜还可用作膜过滤技术。将其吸附性能与截留性能结合,从而可在实际水处理工程中达到更好的应用效果。目前还没有关于它对重金属离子吸附性能的相关公开报道。
本文将制备一种新型的GO/CA复合膜材料,用于探究其对Cd(II)的吸附性能和吸附机制。将吸附前后的GO/CA水凝胶复合膜进行表征;并探究常见的变量因素对其吸附容量的影响。还将引入吸附动力学、吸附等温线来分析其吸附机制。
1. 实验材料及方法
1.1 原材料
海藻酸纳(Sodium alginate,分析纯)、硝酸镉(Cd(NO3)2,分析纯)、HNO3(分析纯),购于国药化学试剂有限公司;天然鳞片石墨,购于南京先丰纳米有限公司;尿素(Urea)、CaCl2、KMnO4、NaNO3 H2O2,分析纯,均购于天津科密欧化学试剂有限公司;浓HCl、浓H2SO4,分析纯,均购于成都科隆化学品有限公司。
1.2 GO/CA水凝胶复合膜的制备
将2.5 g SA和2.5 g尿素加入100 mL超声均匀的GO(制备参考文献[13])溶液(0.3 wt%),室温下用磁力搅拌器以400 r/min的速率搅拌36 h。搅拌均匀的铸膜液在室温下静置36 h以脱除气泡。将铸膜液倒在玻璃板上,用刮膜棒将其铺平后将玻璃板平行地放入2.5 wt%的CaCl2溶液中交联。膜从玻璃板脱落后取出玻璃板。复合膜在48 h后取出,以达到交联完全和尿素溶出的目的。将交联完全的膜用去离子水洗脱后即可置于1 wt%的CaCl2溶液中保存备用。为制备纯CA水凝胶膜,将2.5 g SA和2.5 g尿素加入100 mL去离子水中,其余步骤同上。
1.3 GO/CA水凝胶复合膜的表征
用扫描电镜(SEM,JMS6510LV, Japan)和透射电镜(TEM, JEM-2100, Japan)来表征GO/CA水凝胶复合膜是否制备成功;将GO/CA水凝胶复合膜裁成10 cm×1 cm的样本条,用拉力测定仪(电子单纱强力仪,HD021NS,南通宏大实验仪器有限公司)进行力学性能测试,每个样品测10次,取平均值;用称重法计算GO/CA水凝胶复合膜的平均孔径:先将膜片浸没在去离子水中24 h,取出后用滤纸擦干表面水分。将此湿膜片称重,通过称重法[13]确定其孔隙率ε,再用Guernout-Elford-Ferry公式[13]计算平均孔径r;两种复合膜的水通量使用小型平板纳滤错流过滤系统在25℃、0.1 MPa的条件下进行测定。试验前,在0.15 MPa的压力下用去离子水预压,用通量计算公式[13]计算通量;GO/CA水凝胶复合膜的表面官能团用傅里叶衰减全反射红外光谱仪(FTIR-ATR, Thermoelectroncorp, iS50, 美国)测定。
1.4 GO/CA水凝胶复合膜吸附性能测试
本文将探究溶液pH、Cd(II)初始离子浓度、接触时间、温度等因素对GO/CA水凝胶复合膜吸附性能的影响。溶液的pH用0.1 mol/L HNO3溶液调节。每组实验均将300 mL Cd(NO3)2溶液置于500 ml的烧杯中,然后加入复合膜片0.06 g,用保鲜膜封存静置。在固定时间,每次从同一位置的上层溶液用滴管吸取5 mL的样品,并测定其Cd(II)浓度。达到吸附平衡后,用镊子将膜片夹出。Cd(II)在膜上的吸附量按下式计算:
Vnt(i)=Vnt(i−1)−5 (1) Qnt=n∑i=1(Cnt(i−1)−Cnt(i))⋅Vnt(i−1)m (2) 式中:Qnt是在时间t的吸附容量(mg·g−1);Cnt是第i次采样时的Cd(II)浓度(mg·L−1);Vnt(i)是第i次取样时Cd(NO3)2溶液的体积(mL);m是用于吸附的GO/CA水凝胶复合膜的重量(g)。溶液中的Cd(II)浓度由电感耦合等离子体发射光谱仪(ICP-5000,聚光科技(杭州)股份有限公司)测定。
为探究pH的影响,将溶液pH分别调至3、4、5、6、7,在初始离子浓度为80 mg·L−1、温度为318 K的条件下进行吸附;为探究GO的影响,在pH=7、288 K、初始离子浓度50 mg·L−1的条件下,分别将0.06 g的CA膜和GO/CA水凝胶复合膜加入Cd(NO3)2溶液进行静态吸附实验;为探究初始离子浓度的影响,在pH=7、318 K的条件下,配制梯度浓度(10、40、80 mg·L−1)的溶液进行静态吸附实验;为探究温度和接触时间的影响,在初始离子浓度为50 mg·L−1、pH=7的条件下,设置三组温度(288 K、303 K、318 K)的静态吸附实验;为探究GO/CA水凝胶复合膜的再生性,在pH=7,初始浓度为80 mg·L−1的条件下进行5个吸附-解吸循环。选取0.4 mol/L HCl溶液作为洗脱剂,洗脱后用去离子水冲洗。置于CaCl2溶液中12 h恢复强度后,进入下一循环。
1.5 吸附机制
为探究吸附过程的动力学规律,引入伪一级、伪二级、Elovich动力学模型[1]和颗粒内扩散模型[2];引入Freundlich和Langmuir模型[2]对吸附过程进行拟合来探究Cd(II)在GO/CA水凝胶复合膜上的平衡吸附;由复合膜本身的性质及其对重金属离子的吸附特点可知,吸附过程存在离子交换。定量检测吸附平衡后的Cd(NO3)2溶液,确定溶液中Ca(II)的增加量,来判定Cd(II)与Ca(II)的离子交换在吸附中所占的比例。RL和N分别为单独定义的一个无量纲常数和Freundlich液相吸附等温指数。
1.6 吸附检测方法
用傅里叶红外衰减全反射红外光谱仪定性表征吸附Cd(II)前后的GO/CA水凝胶复合膜。对吸附Cd(II)前后的GO/CA水凝胶复合膜喷金处理后进行X射线能谱分析(XPS K-Alpha Thermo, AlKα)。
2. 结果与讨论
2.1 GO/CA水凝胶复合膜的表面形貌、微观结构、渗透性能及力学性能
GO/CA水凝胶复合膜的表面形貌和微观结构如图1(a)和图1(b)所示。从图1(a)可以看出,GO/CA水凝胶复合膜表面平整,有烘干留下的褶皱。从图1(b)可以看出,在水凝胶均匀的网络骨架结构上有片层状的GO,两者均匀地结合,说明成功制备了GO/CA水凝胶复合膜。
纯CA膜和GO/CA水凝胶复合膜的红外光谱如图1(c)所示。可见,加入GO后,膜表面官能团的类型未发生变化。在3 300 cm−1附近的特征峰为—OH的伸缩振动峰,1 600和1 400 cm−1附近的特征峰为羧酸盐的反对称和对称伸缩峰,1 300 cm−1附近为C—H的伸缩振动峰,1 000 cm−1附近的峰为C—O的伸缩振动峰。而对于GO,羧基的特征峰位于1 723和1 618 cm−1。以上结果也说明了加入到铸膜液中的GO,参与了制膜过程的交联反应,从而使其由羧基状态转化成了羧酸盐状态。
表1是CA和GO/CA水凝复合膜的渗透性能。可以看出,加入GO后,膜的孔隙率和平均孔径都明显地增大。这是由于加入GO使水凝胶骨架之间有更大的支撑空间,进而膜的内部结构更加立体。内部孔隙率的增加也提升了膜的输水性能,从而使膜的水通量增大。
表 1 CA膜和GO/CA水凝复合膜的渗透性能Table 1. Permeability of CA membrane and GO/CA hydrogel composite membraneMembrane Mean pore size/nm Poriness/% Water flux/(L·m-2h-1) CA 10.6 86.5 14.7 GO/CA 12.6 90.1 18.1 CA膜和GO/CA水凝复合膜的力学性能如表2所示。可以看出GO的加入明显提升了其机械强度。这是由于GO加入后,三者相互交联,形成比CA膜更稳定的结构。
表 2 CA膜和GO/CA水凝复合膜的力学性能Table 2. Mechanical properties of the CA membrane and GO/CA hydrogel composite membraneMembrane Elongation at break/% Fracture energy/(kJ·m−2) Stress/MPa CA 95 34 914 GO/CA 143 65 1 725 2.2 GO对GO/CA水凝胶复合膜吸附性能的影响
图2(a)是CA膜和GO/CA水凝胶复合膜吸附性能的比较。可以看出,在添加GO后,膜的吸附性能明显提升。由于加入GO,膜表面有了更多的吸附位点(含氧基团),提高了膜的吸附能力。且加入GO会增大膜的孔隙率,为吸附提供更大的空间。
2.3 溶液初始pH值对GO/CA水凝胶复合膜吸附性能的影响
溶液初始pH值对GO/CA水凝胶复合膜吸附性能的影响如图2(b)所示。可以看出在低pH时,吸附效果较差。随pH升高,吸附容量逐渐增大,在pH为6~7时保持稳定。这是由于pH影响膜的表面电性。GO/CA水凝胶复合膜表面有大量羧基等含氧基团。在溶液中H+浓度较大时(pH<pKa (3.38~3.65)[14]),含氧基团被质子化,使膜表面带正电。这严重影响带正电的重金属离子与膜的静电吸引作用,阻碍了吸附反应。随着pH升高,膜表面质子化逐渐消失,负电性恢复,吸附容量也逐渐增加,在pH=6~7时达到稳定。从Cd(II)离子种类分布(图2(c))可看出,pH升到弱碱性时,Cd(II)的水解增强,形成氢氧化物甚至会出现沉淀,这会影响吸附反应的进行。因此pH=6~7是最适宜的条件。
2.4 Cd(II)始浓度对GO/CA水凝胶复合膜吸附性能的影响
图2(d)为Cd(II)初始浓度不同时GO/CA水凝胶复合膜的吸附量。可以看出吸附量与浓度成正相关。由于离子浓度较大,溶液对金属离子会产生更强的驱动力[15]。较大的离子浓度,还会使离子与GO/CA水凝胶复合膜之间有更大的碰撞几率和接触密度[16]。这些是吸附的有利因素,因此Cd(II)初始浓度与吸附量呈正相关。
2.5 温度和吸附时间对GO/CA水凝胶复合膜吸附性能的影响
图2(e)为不同温度下时间与吸附量的关系。可以看出,吸附量随时间先迅速增长后缓慢增长,最后趋于稳定。这是由于吸附初期离子浓度大且空余吸附位点多。随吸附位点逐渐被占据,吸附速度减缓,在20 h达到平衡。由此可认为吸附最佳时间为20 h。还可知,吸附量与温度正相关。但当温度上升到一定值后其影响变小,这是由于膜表面吸附位点数量固定,吸附位点达到饱和,吸附量就基本保持稳定,不会再随温度升高而增大。
2.6 解吸次数对GO/CA水凝胶复合膜吸附性能的影响
如图2(f)所示,解吸次数对GO/CA水凝胶复合膜吸附Cd(II)有一定的影响,但在5次吸附-解吸循环后仍能保持70%的吸附量,说明复合膜具有可重复利用性。在经过吸附-解吸循环后,膜的吸附量下降的原因是:吸附过程中,不可逆吸附占据一定的比例,使这部分吸附位点难以循环利用;且解吸过程具有不完全性,这也使膜在再吸附过程失去一部分吸附能力,使吸附量下降。
2.7 GO/CA水凝胶复合膜吸附动力学
初始浓度C0不同时,GO/CA水凝胶复合膜吸附Cd(II)动力学拟合结果如图3(a)~3(d)和表3所示。在低浓度下,吸附过程与伪一级动力学模型更一致。拟合优度R2更接近于1,平衡吸附量Qe拟合值更接近于实验数据。而Cd(II)浓度增加到40 mg·L−1以上时,吸附过程则更符合伪二级吸附动力学模型。图3(d)是颗粒内扩散模型结果,可以看出复合膜吸附Cd(II)明显地分为了三个阶段:表面吸附阶段、颗粒内部扩散阶段和吸附平衡阶段。其中表面吸附阶段的反应时长为4 h,颗粒内扩散阶段的反应时长为16 h,因此第二阶段被认为是吸附过程的速率控制阶段,说明此吸附过程是颗粒内扩散为主的三阶段吸附[17]。
表 3 Cd(II)的初始浓度C0不同时GO/CA水凝复合膜吸附性能的动力学模型拟合参数Table 3. Kinetic model parameters of GO/CA hydrogel composite membrane adsorption at different initial concentration C0 of Cd(II)C0/(mg·L−1) Pseudo-first order kinetic model Pseudo-second order kinetic model Elovich model k1/min−1 Qe/(mg·g−1) R2 k2/min−1 Qe/(mg·g−1) R2 A B R2 10 0.1530 51.37 0.9999 0.0826 57.28 0.9874 34.53 −4.497 0.964 1 40 0.3131 140.0 0.9919 0.0116 147.5 0.9993 113.7 −7.579 0.9785 80 0.4497 211.9 0.9804 0.0066 224.1 0.9993 135.3 −22.17 0.9714 Notes: C0—Initial concentration of Cd(II); R2—Goodness; Qe—Adsorption capacity at adsorption equilibrium; k1, k2 and A—Constant of kinetic models, respectively; B—Coefficient of elovich kinetic models. 2.8 GO/CA水凝胶复合膜吸附等温线模型
图3(e)、3(f)和表4是不同温度下GO/CA水凝胶复合膜吸附Cd(II)等温线拟合结果。可以看出,此吸附过程更符合Langmuir模型,由于拟合优度R2更接近于1,说明吸附过程属于单层吸附[18]。计算得到在288、303和318 K时RL均在0~1范围内,说明GO/CA水凝胶复合膜吸附Cd(II)是有利吸附。Freundlich模型的R2都大于0.9,其参数有较大参考价值。通过拟合得到的N分别为1.79、2.77和3.15,可判断吸附过程属于物理吸附。
表 4 GO/CA水凝胶复合膜吸附Cd(II)的吸附等温线模型参数Table 4. Isothermal adsorption model parameters of Cd(II) adsorbed by GO/CA hydrogel composite membraneTemper-
ature/KFreundlich isotherm Langmuir isotherm kf N R2 kl Qm/(mg·g−1) R2 288 13.81 1.787 0.9445 0.1766 85.40 0.9914 303 47.99 2.770 0.9618 0.2168 161.8 0.9952 318 47.67 3.147 0.9589 0.3146 173.6 0.9981 Notes: kf—Capacity factor of Freundlich; N—Liquid phase adsorption isotherm index of Freundlich; k1—Langmuir constant of affinity point; Qm—Adsorption capacity of single layer. 2.9 GO/CA水凝胶复合膜离子交换机制
在吸附达到平衡后,测定溶液中出现的Ca(II)的浓度为2.32 mg·L−1。由此可知离子交换作用在吸附过程占了较大的比重,经计算得到物理作用力吸附、离子交换作用及溶液中剩余的未被吸附的Cd(II)的比例分别是59.94%、32.33%、7.72%。
2.10 GO/CA水凝胶复合膜表面化学官能团
图4是吸附Cd(II)前后GO/CA水凝胶复合膜的FTIR图谱。在3 232、1 586、1 407和1 019 cm−1处的四个特征峰分别代表—OH、羧基上的—C=O和—C—OH及C—O的伸缩振动峰。证明膜表面有大量羟基和羧基等亲水基团。吸附后,四个特征峰的位置分别移动到3 208、1 577、1 408和1 023 cm−1,强度也轻微地降低。没有新的特征峰出现,说明吸附过程发生了配位反应或离子交换[19-20]。这表明化学吸附可能占有一定的比重,但Cd(II)在GO/CA水凝胶复合膜上的吸附仍然以物理吸附作用为主。
2.11 GO/CA水凝胶复合膜表面元素构成及化学态
图5是GO/CA水凝胶复合膜吸附Cd(II)前后的XPS能谱。图5(a)为吸附前后复合膜的XPS全谱。可以看出,吸附重金属离子后,Ca2+的吸收峰强度减弱,且在405 eV出现新的吸收峰,即Cd 3d的吸收峰图5(b)。证明吸附反应发生,也证明了Ca2+与Cd2+发生了离子交换作用。图5(c)为吸附前后膜的C元素的XPS拟合分峰结果。吸附后,羧基和羟基的强度减弱,峰位置也发生变化,说明复合膜中的羟基、羧基等基团参与了吸附过程,与金属离子形成了配合物。
3. 结 论
(1)成功制备了氧化石墨烯(GO)/海藻酸钙(CA)水凝胶复合膜。加入GO提高了GO/CA复合膜的力学性能、平均孔径、水通量及吸附性能。复合膜对Cd(II)的吸附性能良好,拟合得到的最大吸附量为173.61 mg·g−1,平衡时间为20 h。最适pH为6~7,吸附量与初始离子浓度、接触时间、温度都成正相关。
(2) GO/CA水凝胶复合膜对重金属离子Cd(II)的吸附过程符合Langmuir吸附等温线模型,属于单层有利的物理吸附。在低离子浓度,吸附过程遵循伪一级吸附动力学,在较高浓度遵循伪二级吸附动力学,是以颗粒内扩散为控速步骤的三阶段吸附。
(3)经过5个吸附-解吸循环,GO/CA水凝胶复合膜对Cd(II)的吸附量仍能保持原吸附量的70%,证明了其可重复利用性。
-
图 17 UHPC双向板矩形截面受弯承载力计算图
Figure 17. Calculation diagram of bending capacity of rectangular section of UHPC two-way slabs
fc—Axial compressive strength; ft—Axial tensile strength; h0—Effective height of section; Mu−Theoretical bending capacity; a—Distance from the mesh resultant point in the tension zone to the edge of the bottom section of the slab; b—Calculated width of the slab; α1—Equivalent rectangular stress diagram coefficient of compression zone, take 0.88; β—Equivalent rectangular stress diagram coefficient of tensile zone, take 0.35; xc—Height of compression zone; xt—Equivalent rectangular stress height of tension zone; fte—Mesh effective stress; k—Ratio of x to xc; Af—Total section area of grid; h—Height of slab; x—Equivalent rectangular stress height of compression zone
表 1 钢丝网和玻璃纤维网力学性能参数
Table 1 Mechanical property parameters of steel wire mesh and glass fiber mesh
Mesh name Tensile strength/MPa Elastic modulus/GPa Monofilament area/mm2 Elongation/
%SWM 582 200 0.785 2.6 GFM 2200 79 0.290 3.0 表 2 超高性能混凝土(UHPC)基体配合比
Table 2 Composition ratio of ultra-high performance concrete (UHPC)
Matrix type Cement Silica Mineral powder River sand Water
consumptionUHPC 1.000 0.182 0.621 2.182 0.327 表 3 SWM或GFM增强UHPC双向板试件编号与分组方案
Table 3 Specimen number and grouping scheme of UHPC reinforced with SWM or GFM
Group category Specimen number Dosage and type
of fiberNumber of mesh layers The first
groupU1-S2-12 1.5vol% SF 2 U1-S3-12 1.5vol% SF 3 U1-S4-12 1.5vol% SF 4 The second group U1-S2-12 1.5vol% SF 2 U1-S2-20 1.5vol% SF 2 U1-S3-12 1.5vol% SF 3 U1-S3-20 1.5vol% SF 3 U1-S4-12 1.5vol% SF 4 U1-S4-20 1.5vol% SF 4 The third group U1-S2-20 1.5vol% SF 2 U2-S2-20 1.0vol% SF+0.5vol% PVA 2 U3-S2-20 0.5vol% SF+1.0vol% PVA 2 U4-S2-20 0.5vol% SF+1.0vol% GF 2 U5-S2-20 0.5vol% SF+1.0vol% BF 2 The fourth
groupU1-S2-12 1.5vol% SF 2 U1-S2-20 1.5vol% SF 2 U1-G2-5 1.5vol% SF 2 Notes: In specimen number, Un represent UHPC types; Sn/Gn represent SWM or GFM types and number of mesh layers; The next number represents the mesh aperture. Such as, U1-S2-12 represents UHPC slab with 2 layers of steel wire mesh with 12 mm aperture and 1.5vol% steel fiber volume fraction. 表 4 短切纤维性能参数
Table 4 Performance parameters of chopped fibers
Fiber type Diameter/µm Tensile strength/MPa Density/(g·cm−3) Elastic modulus/GPa Length/mm Steel fiber 200 2950 78 205 13 Polyvinyl alcohol 40 1600 1.3 35-40 12 Glass fiber 18 1700 2.68 72 18 Basalt fiber 20 3200 2.6 90-110 20 表 5 SWM或GFM增强UHPC板初裂、峰值荷载及其挠度
Table 5 Initial crack, peak load and deflection of UHPC slabs with SWM or GFM
Specimen number Pcr/kN δcr/mm Pm/kN δm/mm U1-S2-12 61.76 1.50 80.15 3.79 U1-S3-12 64.88 1.84 92.06 7.76 U1-S4-12 72.95 2.50 106.05 8.53 U1-S2-20 57.93 1.44 72.79 3.43 U1-S3-20 61.15 1.64 80.30 7.32 U1-S4-20 68.35 2.05 88.73 8.86 U2-S2-20 51.34 1.48 77.08 3.49 U3-S2-20 52.72 1.53 65.59 3.47 U4-S2-20 45.97 1.57 60.73 13.02 U5-S2-20 43.15 1.39 57.62 11.93 U1-G2-5 30.56 0.85 73.14 6.53 Notes: Pcr—Initial crack load;δcr—Deflection at initial crack load;Pm—Peak load;δm—Deflection at peak load. 表 6 SWM或GFM增强UHPC板不同挠度处能量吸收计算值
Table 6 Calculated values of energy absorption for different deflections of UHPC slabs with SWM or GFM
Specimen
numberQcr/J Qm/J Q2/J Q5/J Q15/J Q25/J U1-S2-12 54.78 226.42 88.71 321.55 1084.37 1769.73 U1-S3-12 74.39 578.58 84.55 329.84 1229.86 2019.31 U1-S4-12 94.82 676.10 60.43 315.28 1332.85 2215.37 U1-S2-20 44.57 180.36 80.03 290.77 934.06 1480.90 U1-S3-20 61.06 490.54 83.62 306.65 1087.16 1762.61 U1-S4-20 82.41 656.36 79.01 320.16 1181.46 1965.45 U2-S2-20 41.32 178.87 71.49 292.22 959.04 1501.36 U3-S2-20 40.85 156.78 66.52 254.19 805.11 1139.25 U4-S2-20 36.30 673.04 56.85 213.34 785.48 1206.25 U5-S2-20 36.15 578.58 63.19 211.76 759.31 1191.33 U1-G2-5 12.83 327.61 52.35 218.20 744.56 − Notes: Qcr and Qm—Energy absorption values at the initial crack and peak load deflection of UHPC slabs, respectively; Q2, Q5, Q15, Q25—Energy absorption value of UHPC slabs with deflection of 2 mm, 5 mm, 15 mm and 25 mm, respectively. 表 7 SWM或GFM增强UHPC板硬化指数和韧性指标
Table 7 Hardening index and toughness index of UHPC slabs with SWM or GFM
Specimen number ISh T15 T25 U1-S2-12 1.30 141.68 231.86 U1-S3-12 1.42 160.82 264.70 U1-S4-12 1.45 174.38 290.50 U1-S2-20 1.26 121.90 193.86 U1-S3-20 1.31 142.05 230.92 U1-S4-20 1.30 154.46 257.61 U2-S2-20 1.50 125.19 196.55 U3-S2-20 1.24 104.94 148.90 U4-S2-20 1.32 102.35 157.72 U5-S2-20 1.34 98.91 155.75 U1-G2-5 2.39 96.97 − Notes: ISh—Hardening index; T15—Toughness index at 15 mm deflection; T25—Toughness index at 25 mm deflection. 表 8 各UHPC板抗弯承载力计算结果
Table 8 Calculation results of bending capacity of UHPC slabs
Specimen
numberfc/MPa ft/MPa h0/mm εc fte/MPa λ/% Mu
/(kN·m)Me
/(kN·m)Me/Mu U1-S2-12 98.81 6.37 43.5 0.00391 3279.73 82.0 9.96 10.02 1.006 U1-S3-12 98.81 6.37 41.0 0.00397 2595.67 64.9 10.95 11.13 1.017 U1-S4-12 98.81 6.37 38.5 0.00401 2199.33 55.0 11.54 13.26 1.198 U1-S2-20 98.81 6.37 43.5 0.00353 3908.73 97.7 7.81 9.10 1.165 U1-S3-20 98.81 6.37 41.0 0.00365 3205.44 80.1 8.82 10.04 1.138 U1-S4-20 98.81 6.37 38.5 0.00385 2740.10 68.5 9.39 11.09 1.227 U2-S2-20 91.12 6.49 43.5 0.00353 3871.35 96.3 7.73 9.64 1.247 U3-S2-20 90.78 6.11 43.5 0.00341 3681.44 92.0 7.36 8.20 1.114 U4-S2-20 86.52 5.95 43.5 0.00339 3570.49 89.3 7.14 7.59 1.064 U5-S2-20 83.06 5.89 43.5 0.00338 3480.91 87.0 6.97 7.20 1.034 U1-G2-5 98.81 6.37 45.0 0.00409 2027.73 78.0 7.24 8.62 1.191 Notes:fc—Axial compressive strength; ft—Axial tensile strength; h0—Effective height of section; εc—Compressive strain of concrete; fte—Mesh effective stress; λ—Effective utilization of mesh; Mu—Theoretical bending capacity; Me—Experimental bending capacity. -
[1] GUO Z W, DUAN X Z, WANG Q, et al. Development on the corrosion of steel fiber and prevention in the ultra-high performance concrete (UHPC)[J]. Materials Science Forum,2021,1036:358-370. DOI: 10.4028/www.scientific.net/MSF.1036.358
[2] NIU Y F, WEI J X, JIAN C J. Crack propagation behavior of ultra-high-performance concrete (UHPC) reinforced with hybrid steel fibers under flexural loading[J]. Construction and Building Materials,2021,294:123510. DOI: 10.1016/j.conbuildmat.2021.123510
[3] FAN W, SHEN D J, ZHANG Z Y, et al. A novel UHPFRC-based protective structure for bridge columns against vehicle collisions: Experiment, simulation, and optimization[J]. Engineering Structures,2020,207:110247. DOI: 10.1016/j.engstruct.2020.110247
[4] 邵旭东, 樊伟, 黄政宇. 超高性能混凝土在结构中的应用[J]. 土木工程学报, 2021, 54(1):1-13. SHAO Xudong, FAN Wei, HUANG Zhengyu. Application of ultra-high performance concrete in engineering structures[J]. China Civil Engineering Journal,2021,54(1):1-13(in Chinese).
[5] 陈宝春, 韦建刚, 苏家战, 等. 超高性能混凝土应用进展[J]. 建筑科学与工程学报, 2019, 36(2):10-20. DOI: 10.3969/j.issn.1673-2049.2019.02.003 CHEN Baochun, WEI Jian'gang, SU Jiazhan, et al. State-of-the-art progress on application of ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering,2019,36(2):10-20(in Chinese). DOI: 10.3969/j.issn.1673-2049.2019.02.003
[6] FERDOSIAN I, CAMOES A. Mechanical performance and post-cracking behavior of self-compacting steel-fiber reinforced eco-efficient ultra-high performance concrete[J]. Cement and Concrete Composites,2021,121:104050. DOI: 10.1016/j.cemconcomp.2021.104050
[7] 梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731. LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
[8] 邵旭东, 李芳园, 邱明红, 等. 钢纤维特性对UHPC轴拉性能与弯拉性能的影响及对比研究[J]. 中国公路学报, 2020, 33(4):51-64. DOI: 10.3969/j.issn.1001-7372.2020.04.006 SHAO Xudong, LI Fangyuan, QIU Minghong, et al. Influential and comparative research on the effects of steel fiber properties on the axial tensile and bending tensile properties of UHPC[J]. China Journal of Highway and Transport,2020,33(4):51-64(in Chinese). DOI: 10.3969/j.issn.1001-7372.2020.04.006
[9] KIM D J, PARK S H, RYU G S, et al. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers[J]. Construction and Building Materials,2011,25(11):4144-4155. DOI: 10.1016/j.conbuildmat.2011.04.051
[10] SU T K, JEONG I C, KYUNG T K, et al. Hybrid effects of steel fiber and microfiber on the tensile behavior of ultra-high performance concrete[J]. Composite Structures,2016,145:37-42. DOI: 10.1016/j.compstruct.2016.02.075
[11] YAN P, CHEN B, AFGAN S, et al. Experimental research on ductility enhancement of ultra-high performance concrete incorporation with basalt fiber, polypropylene fiber and glass fiber[J]. Construction and Building Materials,2021,279:122489. DOI: 10.1016/j.conbuildmat.2021.122489
[12] 朱江. 纤维增强钢丝网混凝土构件抗弯性能试验研究[D]. 大连: 大连理工大学, 2007. ZHU Jiang. Experimental study on flexural behavior of fiber reinforced ferroconcrete member[D]. Dalian: Dalian University of Technology, 2007(in Chinese).
[13] 周臻, 张逸, 王永泉, 等. 网格增强UHPC薄板拉伸力学性能试验研究[J]. 东南大学学报(自然科学版), 2019, 49(4):611-617. ZHOU Zhen, ZHANG Yi, WANG Yongquan, et al. Experimental study on tensile mechanical property of grid reinforced UHPC plates[J]. Journal of Southeast University (Natural Science Edition),2019,49(4):611-617(in Chinese).
[14] 李冬, 丁一宁. 钢纤维对玄武岩纤维编织网增强混凝土板双向弯曲性能的影响[J]. 复合材料学报, 2019, 36(2):482-490. LI Dong, DING Yining. Effect of steel fiber on biaxial flexural property of TRC with basalt fiber mesh in slab test[J]. Acta Materiae Compositae Sinica,2019,36(2):482-490(in Chinese).
[15] 丁一宁, 菅淑敏, 李冬. 玻璃纤维网格布的耐碱性能及其对混凝土板双向受弯性能的影响[J]. 复合材料学报, 2019, 36(4):954-963. DING Yining, JIAN Shumin, LI Dong. Alkaline resistance of glass fiber meshes and its effect on biaxial flexural behavior of concrete slabs[J]. Acta Materiae Compositae Sinica,2019,36(4):954-963(in Chinese).
[16] LI D, DING Y N, WANG Q, et al. Hybrid effect of fiber mesh and short fibers on the biaxial bending behavior of TRC[J]. Magazine of Concrete Research,2018,71(16):869-880. DOI: 10.1680/jmacr.17.00284
[17] 赵国藩, 李士恩, 李丽娟, 等. 钢纤维增强钢丝网混凝土T形梁的抗弯试验研究[J]. 华南理工大学学报(自然科学版), 2008, 36(1):117-121, 127. ZHAO Guofan, LI Shien, LI Lijuan, et al. Experimental investigation into flexural behavior of steel fiber-reinforced ferroconcrete T-shape beam[J]. Journal of South China University of Technology (Natural Science Edition),2008,36(1):117-121, 127(in Chinese).
[18] European Federation of National Associations Representing for Concrete. European specification for sprayed concrete: ISBN 0-952-24831-X[S]. Loughborough: Loughborough University, 1996.
[19] KONG K, MESTICOU Z, MICHEL M, et al. Comparative characterization of the durability behaviour of textile-reinforced concrete (TRC) under tension and bending[J]. Composite Structures,2017,179:107-123. DOI: 10.1016/j.compstruct.2017.07.030
[20] SOLEIMANI M S, BANTHIN N. Flexural response of hybrid fiber-reinforced cementitious composites[J]. ACI Materials Journal, 2005, 102(6): 382-389.
[21] 王志成. 超高性能混凝土结构抗弯性能试验研究[D]. 成都: 西南交通大学, 2017. WANG Zhicheng. Experimental study on flexural perfor-mance of ultra high performance concrete structure[D]. Chengdu: Southwest Jiaotong University, 2017(in Chinese).
-
期刊类型引用(3)
1. 张恒,张保平,肖煜坤,王尹. 氨基硫脲/季铵木质素对铂的吸附. 复合材料学报. 2022(10): 4674-4684 . 本站查看
2. 狄婧,刘海霞,姜永强,郭金鑫,赵国虎. 聚吡咯/壳聚糖复合膜的制备及其对Cu(Ⅱ)和Cr(Ⅵ)吸附机制. 复合材料学报. 2021(01): 221-231 . 本站查看
3. 苏凯,廖明旭,张胜利,贺玉龙. 蒙脱石-纤维素复合膜对Cd(Ⅱ)吸附性能研究. 矿物岩石. 2020(04): 1-6 . 百度学术
其他类型引用(4)
-