生物质基多级孔活性炭-聚苯胺复合材料的合成及其电化学储能性能

Synthesis and electrochemical energy storage performance of biomass-based porous hierarchical activated carbon-polyaniline composites

  • 摘要: 为制备高性能、低成本的储能器件,本文通过简单的一步原位化学聚合的方法制备了生物质基多级孔活性炭-聚苯胺复合材料(HAC-PANI),并探讨了其在超级电容器(SCs)及锌离子混合超级电容器(ZHSCs)领域的应用。研究结果表明,复合材料中HAC的分级多孔结构和高的比表面积为PANI提供了生长位点,有效减少了PANI的团聚现象,并能促进电化学储能过程中电解质离子的传输,降低界面电荷传递电阻。当HAC与苯胺单体(AN)的质量比为1∶2时,PANI纳米颗粒均匀生长在HAC基底上,所得复合电极材料(HAC-2PANI)的电化学储能性能达到最佳,在三电极体系下质量比电容高达415.6 F·g−1(@1 A·g−1)。二电极体系下,基于HAC-2PANI的全固态超级电容器(s-HAC-PANI-SC)质量比电容为217.4 F·g−1(@1 A·g−1)、能量密度为26.5 W·h·kg−1、功率密度为1875.0 W·kg−1。由于PANI中赝电容的引入,以HAC-2PANI为阴极、Zn箔为阳极所构建的锌离子混合超级电容器(HAC-PANI-ZHSC)在0.2 A·g−1的电流密度下呈现出高的比容量(91.8 mA·h·g−1)、能量密度(64.3 W·h·kg−1)和功率密度(140.0 W·kg−1),并具有良好的倍率性能和循环稳定性,表明了生物质基活性炭复合材料在高性能、低成本电化学储能器件中潜在的应用前景。

     

    Abstract: To fabricate high performance energy storage devices with low cost, this work proposed a facile method to prepare biomass-based hierarchical activated carbon-polyaniline composites (HAC-PANI) via an in-situ chemi-cal polymerization method, and their applications in supercapacitors (SCs) and zinc-ion hybrid supercapacitors (ZHSCs) were investigated. The results show that hierarchical porous structure and high specific area of HAC provide growth sites for PANI and effectively reduce the agglomeration of PANI and meanwhile promote the transport of electrolyte ions, and degrease the charge transfer resistance. When the mass ratio of HAC to aniline monomer (An) is 1∶2, uniform PANI nanoparticles were observed growing on HAC, and the resulting composite (HAC-2PANI) electrode exhibits the optimum performance. Under the three-electrode system, the mass specific capacitance of HAC-2PANI reaches as high as 415.6 F·g−1(@1 A·g−1). The HAC-2PANI based all-solid supercapacitor (s-HAC-PANI-SC) displays a specific capacitance of 217.4 F·g−1(@1 A·g−1), an energy density of 26.5 W·h·kg−1 and a power density of 1875.0 W·kg−1. The zinc-ion hybrid supercapacitor (HAC-PANI-ZHSC) constructed with HAC-2PANI as the cathode and Zn foil as the anode exhibits a high specific capacity of 91.8 mA·h·g−1(@0.2 A·g−1), a remarkable energy density of 64.3 W·h·kg−1, and a power density of 140.0 W·kg−1, indicating promising potentials of biomass-based carbon composites for high performance and low cost electrochemical energy storage devices.

     

/

返回文章
返回