FRP筋与全珊瑚骨料海水混凝土界面粘结-滑移本构关系

Bond-slip constitutive relation between FRP bars and coral aggregate seawater concrete

  • 摘要: 纤维增强树脂复合材料(Fiber reinforced polymer,FRP)具有优良的抗腐蚀性能,用其代替普通钢筋能够很好地解决钢筋锈蚀问题。同时我国的珊瑚和海水资源丰富,用其代替传统砂石骨料是解决海岛建设中传统材料稀缺问题的有效方法之一。FRP筋与珊瑚骨料海水混凝土之间的粘结性能是决定其是否能像普通钢筋混凝土一样在实际工程中应用的重要因素之一。目前,关于FRP筋全珊瑚骨料海水混凝土结构的界面粘结性能研究很少,尤其是理论方面。于是,通过试验和数值模拟验证了简化双线性模型的合理性,并在此基础上推导了FRP筋全珊瑚骨料海水混凝土的界面粘结应力τ(x)和相对滑移量s(x)表达式,绘制了界面相对滑移和界面粘结应力的分布图。将采用表达式所得到的理论解与试验和模拟结果进行对比分析,其结果表明:通过理论计算所得的理论解与试验结果吻合度较高;FRP筋直径和粘结长度的增加会导致界面粘结应力和相对滑移的分布更加不均匀;珊瑚骨料混凝土强度的改变对界面粘结应力和相对滑移的分布影响不大;玻璃纤维增强树脂复合材料(GFRP)筋和玄武岩纤维增强树脂复合材料(BFRP)筋珊瑚骨料海水混凝土的界面粘结应力和相对滑移的分布相类似,与碳纤维增强树脂复合材料(CFRP)筋珊瑚骨料海水混凝土相比,前者的分布更加均匀。

     

    Abstract: Since fiber reinforced polymer (FRP) has excellent corrosion resistance, it can be used to replace ordi-nary steel bars to solve the problem of steel corrosion. Because of the abundant coral and seawater resources in China, using coral instead of traditional sand aggregate is one of the effective methods to solve the problem of scarcity of traditional materials in island construction. Bonding property between FRP bars and coral aggregate seawater concrete is one of the important factors to determine whether FRP reinforced coral aggregate seawater concrete structure can be applied in practical engineering like ordinary reinforced concrete structure. At present, there is little research on the interfacial bonding property of FRP reinforced coral aggregate seawater concrete structure, especially in theory. Therefore, the rationality of the simplified bilinear model will be verified by experiments and numerical simulation. Based on the experiments and numerical simulation, the expressions of interfacial bonding stress and relative slip of FRP reinforced coral aggregate seawater concrete will be derived, and then the distribution maps of interfacial bonding stress and relative slip will be plotted. The theoretical solution obtained by the expression will be compared with the experimental and numerical simulation solution. The results show that the theoretical solution obtained by theoretical calculation is in good agreement with the experimental results. The increase of FRP bar diameter and bonding length will lead to more non-uniform distribution of interfacial bonding stress and relative slip. The change of coral aggregate concrete strength has little effect on the distribution of interfacial bonding stress and relative slip. The interfacial bond stress and relative slip distribution of glass fiber reinforced polymer (GFRP) and basalt fiber reinforced polymer (BFRP) reinforced coral aggregate seawater concrete are similar, and are more uniform than that of carbon fiber reinforced polymer (CFRP) coral aggregate concrete.

     

/

返回文章
返回