Wear resistance and electrochemical corrosion properties of 60wt% coarse and fine WC composite NiCu alloy by laser melting deposition
-
摘要: 通过向镍铜(NiCu)合金中添加不同粒径的WC研究对涂层的微观组织、显微硬度、耐磨性和电化学腐蚀性能的影响规律,以期解决NiCu合金表面硬度较低、耐磨性较差的问题。采用激光熔化沉积技术在A3钢板表面制备了NiCu合金涂层、60wt%粗粒径WC/NiCu复合涂层和60wt%细粒径WC/NiCu复合涂层,采用扫描电子显微镜、X射线光谱仪、光学显微镜表征其样品表面形貌,用显微硬度测试计和磨损试验机测定了熔覆层的显微硬度和耐磨性能,用电化学工作站分别对NiCu合金涂层和复合涂层的电化学腐蚀性能进行测试和分析。在合适的工艺参数下,三种涂层均与基体形成了良好的冶金结合,无明显的裂纹气孔等缺陷。熔覆层的组织以等轴晶和柱状晶为主,WC的加入使晶粒尺寸明显变小。在相同工艺参数下,加入60wt%粗粒径WC、60wt% 细粒径WC的涂层硬度分别提高了62.1%、81.1%,磨损量分别降低了84.8%、94.3%,磨损机制以磨粒磨损为主。在3.5wt%NaCl溶液中,复合涂层的自腐蚀电流密度与NiCu合金涂层相比分别降低了61%和49%。WC的加入显著提高了NiCu合金涂层的性能,细粒径WC对显微硬度、耐磨性提升效果更加明显,粗粒径WC对电化学腐蚀性能提升明显。Abstract: To solve the problems of low surface hardness and poor wear resistance of nickel copper (NiCu) alloy, the effects of WC with different particle sizes on the microstructure, microhardness, wear resistance and electrochemical corrosion resistance of the coating were studied. In this paper, the NiCu alloy coating, 60wt% coarse WC/NiCu composite coating and 60wt% fine WC/NiCu composite coating were prepared on A3 steel by laser melting deposition (LMD). The microstructure was characterized by scanning electron microscope, X-ray spectrometer and optical microscope. The microhardness and wear resistance of the coating were measured by microhardness tester and wear tester. The electrochemical corrosion resistance of NiCu alloy coating and composite coating were tested and analyzed by electrochemical workstation. The results show that the three coatings have formed a good metallurgical bond with the substrate, without obvious cracks and pores under the suitable parameters. The microstructures of cladding layer are mainly equiaxial and columnar, and the size of the grains is obviously reduced by the addition of WC. Compared with the NiCu coating, the microhardness of the coating with 60wt% coarse WC and fine WC increase by 62.1% and 81.1%, respectively, and the wear loss decrease by 84.8% and 94.3%, respectively. The wear mechanism is mainly abrasive wear. In 3.5wt%NaCl solution, the self-corrosion current density of the composite coating is 61% and 49% lower than that of NiCu alloy coating, respectively. The addition of WC significantly improves the performance of the NiCu alloy coating. The fine WC has a more obvious effect on the improvement of microhardness and wear resistance, and the coarse WC has an obvious improvement on the electrochemical corrosion performance.
-
Keywords:
- laser melting deposition /
- NiCu alloy /
- WC /
- wear performance /
- electrochemical corrosion properties
-
激光熔化沉积(Laser melting deposition,LMD)是以激光为热源的增材制造技术,与传统成型工艺相比,LMD具有加工周期短、成型精度高、表面质量好等特点[1-2],已被广泛应用于镍基高温合金、钛合金等零部件的修复和制造[3]。
镍铜合金具有良好的力学性能和耐腐蚀性能,主要用于高温和海水冲刷等恶劣环境,广泛应用于航天、海洋、石油化工等领域[4-5],由于表面硬度较低、耐磨性较差以及高温强度低等缺点[6],限制了其在极端条件下的应用。
颗粒强化是在均匀材料中加入硬质颗粒来强化材料的一种手段,近年来获得了越来越多人的关注[7]。研究表明,陶瓷颗粒可以提高镍基材料的硬度、摩擦磨损性能和耐高温性能[8]。碳化钨(WC)具有高硬度、高耐磨性、优异的热稳定性以及良好的润湿性等优点,其粉末常被用作金属材料的增强相,用于提升金属材料的硬度、耐磨性等性能[9]。Farahmand等[10]在Ni粉中加入了10wt%纳米WC和2wt%La2O3,显著地提高了涂层的硬度,在一定程度上降低了涂层的裂纹敏感性。Sadhu等[11]在Inconel 718基材上制备了NiCrBSi+60%WC涂层,提高了涂层的硬度和耐磨性,但涂层产生了明显的裂纹。杨胶溪等[12]和Xu等[13]研究了WC含量变化对Ni/WC复合涂层高温摩擦磨损性能和拉伸性能的影响,结果表明随着WC含量的增加,复合涂层的高温耐磨性越好,拉伸性能越差。
目前,制备高含量WC的镍基复合涂层工艺尚不完善,极易产生裂纹,纳米WC易团聚,在复合涂层中很难均匀分布,且价格较高,难以推广使用。工业上常用的WC比例一般在30wt%以内,粒度范围53~150 μm。本文提出粗粒径、细粒径WC颗粒增强对比思路,采用激光熔化沉积技术制备60wt%WC/NiCu复合涂层,对复合涂层的物相、微观结构、显微硬度、耐磨性能和电化学腐蚀性能等进行研究。
1. 实验材料与方法
1.1 实验材料
基材为A3钢,粉末材料为NiCu和球形铸造碳化钨。NiCu粉末平均粒径为45~106 μm,其粉末形貌如图1(a)所示,化学成分如表1所示。碳化钨粉末分为粗粒径粉(53~106 μm)和细粒径粉(10~53 μm),其粉末形貌如图1(b)~1(c)所示,化学成分如表2所示。
表 1 NiCu粉末的化学成分Table 1. Chemical composition of NiCu powderwt% C B Si Cu Ni 0.03 1.1 2.0 20 Bal. Notes: Bal.—Balance. 表 2 WC粉末的化学成分Table 2. Chemical composition of WC powderwt% W Cr C Fe V Ti+Ta+Nb Co+Ni+Mo 95-96 0.023 3.95 0.2 0.001 <0.2 <0.2 1.2 实验方法
采用同轴送粉激光熔化沉积工艺,所选用的Raycus光纤激光器波长1080 nm、最大功率1000 W。经过工艺摸索后确定最佳工艺参数为:激光功率800 W、速度10 mm/s、光斑直径2 mm,送粉量18 g/min,送气量5 L/min,搭接率均为50%。为了防止氧化,整个实验在氩气环境中进行。采用NiCu粉末、NiCu/60wt%粗粒径WC复合粉、NiCu/60wt%细粒径WC复合粉分别制备涂层。实验前将三种粉末在110℃条件下烘干2 h,并分别对两种复合粉使用混粉机(VC-5,无锡新洋)混合均匀。
试样用环氧树脂进行镶嵌并且进行研磨、抛光,使用腐蚀液(V(HNO3)∶V(HCl)∶V(HF) = 1∶1∶1)对试样进行60 s的腐蚀处理,采用光学显微镜(Leica DVM6A,德国徕卡公司)、扫描电子显微镜(ZEISS Sigma 300,德国蔡司公司,配备X射线能谱仪EDS,加速电压15 kV)和金相显微镜(Shun Yu 40X,舜宇光学科技(集团)有限公司)对涂层的形貌、显微组织、元素分布等进行分析。D/max2500型X射线衍射仪(XRD,日本Rigaku公司)分析试样的物相组成,扫描速度为8°/min,角度范围为20°~100°。设定HV-1000维氏硬度计(北京标科网络技术有限公司)加载载荷为0.2 kg,时间为10 s,水平线上测量3个点进行平均值计算作为当前位置的显微硬度,测试时避免打在未熔化的WC颗粒上。采用SRV球盘摩擦磨损试验机(上海庆科信息技术有限公司)对熔覆层的摩擦系数进行测试并收集磨屑,采用干滑动摩擦方式,载荷为300 N,磨损时长为1 h,摩擦副材料为陶瓷球,盘状试样尺寸为直径24 mm,厚度7.8 mm,用精度为0.1 mg的电子天平(中国天马公司)称量试样前后的质量来计算磨损量。使用CHI600E型电化学工作站(上海辰华)对复合涂层的电化学腐蚀性能进行测试,采用三电极测量体系(如图2所示),辅助电极为Pt电极,参比电极为AgCl电极,工作电极为熔覆层表面,表面积为0.5 cm2,其他非工作面用环氧树脂涂封,电解质为3.5wt%NaCl溶液,在室温下进行实验。测试前将试样浸泡在电解液中1 h待稳定后进行测试,测量极化曲线时的扫描速率为10 mV/s,电位范围为−2~2 V;电化学阻抗测试的频率范围为10−2~10−5 Hz。测试完成后使用软件计算腐蚀电位和自腐蚀电流密度,分析电化学交流阻抗谱,并建立相应的等效电路。
2. 结果和讨论
2.1 三种涂层试样的物相分析
图3为三种涂层试样的XRD衍射图谱,加入60wt%WC后的复合涂层均出现了WC、W2C[14]和Ni4W[15]等物相,表明在激光作用下,部分WC颗粒发生分解,分解的W与基体中Ni反应生成Ni4W。
2.2 三种涂层试样的微观组织
实验选用的基板为A3钢。如图4所示,熔覆层的表面较为平整、光滑连续,每一道涂层宽度基本与光斑大小一致。图5为三种试样的横截面宏观形貌图,可看出三种涂层无明显的裂纹、气孔等缺陷,球形WC颗粒在涂层中分布较为均匀。
图6为三种试样的显微组织,从图6(a)和6(b)可以看出,NiCu涂层顶部和底部组织结构差异较大,底部以柱状晶为主,尺寸较大,顶部主要是尺寸较小的等轴晶。这与凝固过冷度有关,过冷度与温度梯度G和生长速度R有关,G/R决定了凝固后的组织形态,G和R可由以下公式具体计算[16]:
G=2k(T−T0)2εP (1) R=Vscosθ (2) 式中:T为合金液态温度;T0为材料初始温度;ε为激光吸收系数;P为激光功率;k为材料热传导系数;Vs为激光扫描速度;θ为扫描速度与凝固速度的夹角。
开始阶段凝固界面的温度梯度极大,生长速度较慢,导致G/R的值很大,在涂层底部与基材交界处以界面为形核核心按平面晶的形态生长;随着固液界面的上移,温度梯度下降,G/R的值减小,平面晶转变为柱状晶,并且垂直界面向上生长,表现出明显的定向凝固的特征[17];在熔覆层顶部,G/R的值进一步减小,以等轴晶为主。
从图6(c)和6(d)可以看出,添加60%WC的涂层组织与NiCu相比,晶粒的尺寸明显减小,只观察到少部分的柱状晶,大部分为等轴晶。部分WC颗粒发生溶解,分散到涂层中,限制了晶粒的进一步长大。
对60wt%粗粒径WC/NiCu复合涂层和60wt%细粒径WC/NiCu复合涂层进行了面扫分析,如图7和图8所示,可以看到WC颗粒明显扩散到NiCu基体中。
2.3 三种涂层显微硬度
图9为三种试样的显微硬度及其压痕形貌。三种试样的显微硬度分别为280 HV0.2、454 HV0.2、507 HV0.2,可以看出添加60wt%WC后的涂层硬度明显提高,细粒径WC复合涂层的硬度略高于粗粒径WC复合涂层,这是由于粒径较细的颗粒在涂层中分布的更加均匀,对涂层硬度的提升更加明显。
2.4 三种涂层摩擦磨损性能
图10为三种试样的摩擦系数曲线图,可以把曲线分为两个阶段:初始磨损阶段和稳定磨损阶段。在初始阶段,摩擦系数曲线迅速升高,滑动摩擦在摩擦副之间发生,界面膜将被磨损并在接触点之间发生“冷焊效应”[18]。随着磨损时长的增加,三条曲线基本保持平稳,NiCu合金涂层的摩擦系数最高,细粒径WC复合涂层的摩擦系数最低。图11为三种试样的磨损量,可以看出NiCu合金试样的磨损量为0.0105 g。相比于NiCu合金试样,添加粗粒径WC的试样磨损量显著降低,添加细粒径WC的磨损量更低。粗粒径WC复合涂层和细粒径WC复合涂层的磨损量分别降低了84.8%、94.3%,这表明WC的加入对涂层耐磨性的提升具有显著影响。
图12为熔覆层表面磨损后形貌图。从图12(a)和12(b)可以看出NiCu合金涂层磨损较为严重,涂层表面在剪切力的作用下出现了剥落坑,从剥落坑中剥落出的颗粒成为磨粒进一步磨损,在大量的磨粒作用下形成了明显的犁沟,此时的磨损机制为剥落磨损和磨粒磨损。由图12(c)和12(d)可知,粗粒径WC复合涂层的表面可以看出明显的WC颗粒,与NiCu合金涂层相比,犁沟变得浅而窄,没有发生明显的剥落现象,磨损机制以磨粒磨损为主。这表明加入WC后析出的硬质相能够阻碍涂层的剥落,进而起到降低磨损量的效果。根据图12(e)和12(f)可以发现细粒径WC复合涂层的表面未观察到明显的WC颗粒。此外,在细粒径WC复合涂层的表面发现一些附着物,这是由于随着磨损时长的增加,试样表面温度较高,细粒径小的磨屑粘合在磨损试样表面上。
图 12 三种涂层熔覆层磨损表面形貌图:(a) NiCu低倍;(b) NiCu高倍;(c) Coarse WC/NiCu低倍;(d) Coarse WC/NiCu高倍;(e) Fine WC/NiCu低倍;(f) Fine WC/NiCu高倍Figure 12. Morphologies of the worn surface of the cladding layer of three coatings: (a) NiCu low magnification; (b) NiCu high magnification; (c) Coarse WC/NiCu low magnification; (d) Coarse WC/NiCu high magnification; (e) Fine WC/NiCu low magnification; (f) Fine WC/NiCu high magnification图13是三种试样的磨屑形貌。可以看出其结果与磨损量和磨损形貌图结果一致。NiCu合金涂层的磨屑以片状为主,磨屑尺寸较大,磨屑表面能看出明显的剥落坑和细粒径小的犁沟。相比于NiCu合金涂层,两种WC复合涂层的磨屑尺寸较小,基本在10 μm以下,形状以团絮状为主,少部分为片状。这是由于WC的加入有效地提高了材料的强度和硬度,从而减轻了剥落现象的产生。
图 13 三种涂层磨屑形貌图:(a) NiCu低倍;(b) NiCu高倍;(c) Coarse WC/NiCu低倍;(d) Coarse WC/NiCu高倍;(e) Fine WC/NiCu低倍;(f) Fine WC/NiCu高倍Figure 13. Wear debris morphologies of the three coatings: (a) NiCu low magnification; (b) NiCu high magnification; (c) Coarse WC/NiCu low magnification; (d) Coarse WC/NiCu high magnification; (e) Fine WC/NiCu low magnification; (f) Fine WC/NiCu high magnification2.5 三种涂层电化学腐蚀性能
图14为三种试样在3.5wt%NaCl溶液中的Tafel曲线,可以看出,三种试样均没有明显的钝化区,NiCu合金的曲线相对其他两种试样的曲线波动较明显。由极化曲线计算得到的腐蚀电流密度icorr、自腐蚀电位Ecorr和极化电阻Rp列于表3。一般而言,icorr是反应动力学物理参数,腐蚀电流密度越小,表明腐蚀速率越慢;Ecorr表示腐蚀过程的热力学趋势,腐蚀电位越正,腐蚀反应越难;Rp越大,腐蚀速率越小[19]。从表3可以看出,粗粒径WC复合涂层和细粒径WC复合涂层的自腐蚀电位没有明显差异,均大于NiCu合金的自腐蚀电位,粗粒径WC复合涂层具有最小的腐蚀电流密度(2.72×10−6
A⋅cm−2 )和最大的极化电阻(12185Ω⋅cm−2 ),表明粗粒径WC复合涂层具有最小的腐蚀速率。这表明WC的加入对涂层抗腐蚀性的提升具有显著影响,粗粒径WC的加入要比细粒径WC的加入更能提升材料的抗腐蚀性。表 3 三种涂层试样极化曲线的腐蚀参数Table 3. Corrosion parameters of polarization curve of three coating samplesicorr/(A·cm−2) E corr(vs SCE)/VRp/(Ω·cm−2) NiCu 6.92×10−6 −0.916 4540 Coarse WC/NiCu 2.72×10−6 −0.819 12185 Fine WC/NiCu 3.52×10−6 −0.822 9541 Notes: icorr—Self-corrosion current density; Ecorr—Self-corrosion potential; Rp—Polarization resistance. 为了进一步论证三种试样的电化学腐蚀行为特征,图15给出了三种试样在3.5wt%NaCl溶液中的EIS图谱。Nyquist曲线如图15(a)所示,由阻抗实部Z′和虚部Z″构成。通常用容抗弧半径的大小来表征耐蚀性,容抗弧半径越大,抗电化学腐蚀性能越好[20]。可见,粗粒径WC复合涂层拥有最大的容抗弧半径,表明其具有最好的抗电化学腐蚀性,与动电位极化曲线结果一致。另外,在波特图中,阻抗模值|Z|也被用来表征材料的耐蚀性,|Z|值越大,耐蚀性越好;相位角的大小则用来表示材料阻碍电解质渗入的能力,相位角越大,阻碍能力越强,耐蚀性就越好[21]。比较三种试样的阻抗模值|Z|和相位角可知,其同样呈现出与动态极化曲线、Nyquist曲线相同的规律,即粗粒径、细粒径WC的加入均能提升涂层的抗腐蚀性,粗粒径WC的提升效果略优于细粒径WC。图16为三种试样电化学腐蚀过程的等效电路图。其中:Rs为溶液电阻;Rct为涂层与基材之间的电荷转移电阻;Rf为钝化膜电阻;CPE1为恒定相位元件;W为韦波阻抗元件;C为电极表面的电容[22]。
图 16 三种涂层试样在3.5wt%NaCl溶液中电化学腐蚀过程的等效电路图:(a) NiCu合金;(b) 粗粒径细粒径WCFigure 16. Equivalent circuit diagram of the electrochemical corrosion process of three coating samples in 3.5wt%NaCl solution: (a) NiCu alloy; (b) Coarse and fine WCRE—Reference electrode; SCE—Saturated calomel electrode; Rs—Solution resistance; Rct—Charge transfer resistor; Rf—Passivation film resistors; CPE1—Constant phase element; W—Weber impedance element; C—Capacitance; WE—Working electrode经过电化学腐蚀试验后,其表面的腐蚀痕迹如图17所示。三个试样表面都出现了点蚀。由于溶液的张力、Cl−和氧聚集,腐蚀离子浓度高于其他区域,导致试验区边界腐蚀面积大、腐蚀程度深。
在室温条件下,NiCu/WC复合涂层在3.5wt% NaCl溶液中发生的电化学反应如下[23]:
Ni→Ni2++2e− (3) 2H2O+O2+4e−→4OH− (4) 由于电解液为中性不能直接与阳极材料反应,所以阳极的反应主要是Ni控制(式(3));在阴极区域,随着电压的增加,电流急剧下降,溶解的部分氧气发生还原反应(式(4))。最终反应产物如下式所示:
Ni2++2OH−→Ni(OH)2 (5) Ni(OH)2+2OH−→NiO2+2H2O+2e− (6) 复合涂层的耐腐性显著提升是由于加入高百分比的WC会促进涂层的均匀性,起到固溶强化的作用[24]。此外,WC的加入会加速异质形核,晶界密度的增加和拓宽将堵塞腐蚀通道[25],进一步提高复合涂层的耐腐蚀性能。
3. 结 论
以球形WC作为增强相,采用激光熔化沉积方法在A3钢表面制备了NiCu、60wt%粗粒径WC/NiCu和60wt%细粒径WC/NiCu的三种无裂纹的复合涂层。获得主要结论如下:
(1) 三种涂层与基体结合良好,未发现明显的缺陷,涂层主要由柱状晶和等轴晶组成,主要物相为Ni-Cu、WC、W2C、Ni4W。
(2) 三种试样的显微硬度分别为280 HV0.2、454 HV0.2、507 HV0.2,加入球形WC能够显著提升涂层硬度。
(3) 与NiCu合金涂层相比,60wt%粗粒径、细粒径WC/NiCu复合涂层的磨损性能显著提高,磨损量分别降低了84.8%和94.3%。细粒径WC在NiCu基体中,充当支撑骨架,弥散强化效果更加明显,且形成高硬度的金属化合物,起到阻碍晶粒边界运动的钉扎作用,对磨损性能的提升更大。
(4) 与NiCu合金涂层相比,60wt%粗粒径、细粒径WC/NiCu复合涂层的电化学腐蚀性能显著提高,粗粒径的WC会促进复合涂层的均匀性,同时,晶粒之间的化合物的形成也起到了沉淀强化的作用。此外,晶界密度的增加和拓宽将堵塞腐蚀通道,复合涂层的自腐蚀电流密度分别降低了61%和49%。
-
图 12 三种涂层熔覆层磨损表面形貌图:(a) NiCu低倍;(b) NiCu高倍;(c) Coarse WC/NiCu低倍;(d) Coarse WC/NiCu高倍;(e) Fine WC/NiCu低倍;(f) Fine WC/NiCu高倍
Figure 12. Morphologies of the worn surface of the cladding layer of three coatings: (a) NiCu low magnification; (b) NiCu high magnification; (c) Coarse WC/NiCu low magnification; (d) Coarse WC/NiCu high magnification; (e) Fine WC/NiCu low magnification; (f) Fine WC/NiCu high magnification
图 13 三种涂层磨屑形貌图:(a) NiCu低倍;(b) NiCu高倍;(c) Coarse WC/NiCu低倍;(d) Coarse WC/NiCu高倍;(e) Fine WC/NiCu低倍;(f) Fine WC/NiCu高倍
Figure 13. Wear debris morphologies of the three coatings: (a) NiCu low magnification; (b) NiCu high magnification; (c) Coarse WC/NiCu low magnification; (d) Coarse WC/NiCu high magnification; (e) Fine WC/NiCu low magnification; (f) Fine WC/NiCu high magnification
图 16 三种涂层试样在3.5wt%NaCl溶液中电化学腐蚀过程的等效电路图:(a) NiCu合金;(b) 粗粒径细粒径WC
Figure 16. Equivalent circuit diagram of the electrochemical corrosion process of three coating samples in 3.5wt%NaCl solution: (a) NiCu alloy; (b) Coarse and fine WC
RE—Reference electrode; SCE—Saturated calomel electrode; Rs—Solution resistance; Rct—Charge transfer resistor; Rf—Passivation film resistors; CPE1—Constant phase element; W—Weber impedance element; C—Capacitance; WE—Working electrode
表 1 NiCu粉末的化学成分
Table 1 Chemical composition of NiCu powder
wt% C B Si Cu Ni 0.03 1.1 2.0 20 Bal. Notes: Bal.—Balance. 表 2 WC粉末的化学成分
Table 2 Chemical composition of WC powder
wt% W Cr C Fe V Ti+Ta+Nb Co+Ni+Mo 95-96 0.023 3.95 0.2 0.001 <0.2 <0.2 表 3 三种涂层试样极化曲线的腐蚀参数
Table 3 Corrosion parameters of polarization curve of three coating samples
icorr/(A·cm−2) E corr(vs SCE)/VRp/(Ω·cm−2) NiCu 6.92×10−6 −0.916 4540 Coarse WC/NiCu 2.72×10−6 −0.819 12185 Fine WC/NiCu 3.52×10−6 −0.822 9541 Notes: icorr—Self-corrosion current density; Ecorr—Self-corrosion potential; Rp—Polarization resistance. -
[1] 李俐群, 曲劲宇, 王宪. 激光熔化沉积AlSi10Mg成形特性及力学性能[J]. 表面技术, 2019, 48(6):332-337. LI Liqun, QU Jinyu, WANG Xian. Forming characteristics and mechanical properties of AlSi10Mg deposited by laser melting[J]. Surface Technology,2019,48(6):332-337(in Chinese).
[2] 刘帅, 王阳, 刘常升. 激光熔化沉积技术在制备梯度功能材料中的应用[J]. 航空制造技术, 2018, 61(17):47-56. LIU Shuai, WANG Yang, LIU Changsheng. Application of laser melting deposition technology in the preparation of functionally gradient materials[J]. Aeronautical Manufacturing Technology,2018,61(17):47-56(in Chinese).
[3] 何波, 雷涛, 孙长青, 等. 激光沉积TC4/TC11梯度材料组织与疲劳性能研究[J]. 稀有金属材料与工程, 2019, 48(9):3048-3054. HE Bo, LEI Tao, SUN Changqing, et al. Microstructure and fatigue properties of TC4/TC11 gradient materials by laser deposition[J]. Rare Metal Materials and Engineering,2019,48(9):3048-3054(in Chinese).
[4] 庄其仁, 黄立民, 张文珍. 稀土陶瓷对激光涂敷蒙乃尔合金涂层组织性能的影响[J]. 光电子·激光, 2000(3):309-312. DOI: 10.3321/j.issn:1005-0086.2000.03.027 ZHUANG Qiren, HUANG Limin, ZHANG Wenzhen. Effect of rare earth ceramics on the microstructure and properties of laser-coated monel alloy coating[J]. Journal of Optoelectronics Laser,2000(3):309-312(in Chinese). DOI: 10.3321/j.issn:1005-0086.2000.03.027
[5] AL-SAADI S, RAMAN R K S, ANISUR M R, et al. Graphene coating on a nickel-copper alloy (Monel 400) for microbial corrosion resistance: Electrochemical and surface characterizations[J]. Corrosion Science,2021,182:109299. DOI: 10.1016/j.corsci.2021.109299
[6] SUNDARAM M, KAMARAJ A B, LILLIE G. Experimental study of localized electrochemical deposition of Ni-Cu alloy using a moving anode[J]. Procedia CIRP,2018,68:227-231. DOI: 10.1016/j.procir.2017.12.053
[7] 李刚, 熊梓连, 曾永浩, 等. 激光增材制造WC增强铁基复合材料组织结构及性能研究[J]. 表面技术, 2020, 49(4):271-277. LI Gang, XIONG Zilian, ZENG Yonghao, et al. Research on microstructure and properties of WC reinforced iron-based composites by laser additive manufacturing[J]. Surface Technology,2020,49(4):271-277(in Chinese).
[8] HONG C, GU D D, DAI D H, et al. Laser additive manufacturing of ultrafine TiC particle reinforced Inconel 625 based composite parts: Tailored microstructures and enhanced performance[J]. Materials Science and Engineering: A,2015,635:118-128.
[9] KANG N, MA W, LI F, et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite[J]. Vacuum,2018,154:69-74. DOI: 10.1016/j.vacuum.2018.04.044
[10] FARAHMAND P, LIU S, ZHANG Z, et al. Laser cladding assisted by induction heating of Ni–WC composite enhanced by nano-WC and La2O3[J]. Ceramics International,2014,40(10):15421-15438. DOI: 10.1016/j.ceramint.2014.06.097
[11] SADHU A, CHOUDHARY A, SARKAR S, et al. A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC-60% WC ceramic coating on Inconel 718[J]. Surface and Coatings Technology,2020,389:125646.
[12] 杨胶溪, 张健全, 常万庆, 等. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J]. 材料工程, 2016, 44(6):110-116. DOI: 10.11868/j.issn.1001-4381.2016.06.017 YANG Jiaoxi, ZHANG Jianquan, CHANG Wanquan, et al. High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J]. Journal of Materials Engineering,2016,44(6):110-116(in Chinese). DOI: 10.11868/j.issn.1001-4381.2016.06.017
[13] XU J S, ZHANG X C, XUAN F Z, et al. Tensile properties and fracture behavior of laser cladded WC/Ni composite coatings with different contents of WC particle studied by in-situ tensile testing[J]. Materials Science and Engineering: A,2013,560:744-751. DOI: 10.1016/j.msea.2012.10.028
[14] HAO E, ZHAO X, AN Y, et al. WC-Co reinforced NiCoCrAlYTa composite coating: Effect of the proportion on microstructure and tribological properties[J]. International Journal of Refractory Metals and Hard Materials,2019,84:104978. DOI: 10.1016/j.ijrmhm.2019.104978
[15] BUTT M Z, ALI D, AFTAB M, et al. Nitrogen ions implantation in W-based quad alloy: Structure, electrical resistivity, surface roughness and vickers hardness as a function of ion dose[J]. Metals and Materials International,2020:1-17.
[16] HUANG Y, ZENG X, HU Q, et al. Microstructure and interface interaction in laser induction hybrid cladding of Ni-based coating[J]. Applied Surface Science,2009,255(7):3940-3945. DOI: 10.1016/j.apsusc.2008.10.050
[17] 曹俊, 卢海飞, 鲁金忠, 等. WC对激光熔覆热作模具的组织和磨损性能的影响[J]. 中国激光, 2019, 46(7):68-74. CAO Jun, LU Haifei, LU Jinzhong, et al. Effect of tungsten carbide particles on microstructure and wear resistance of hot working die prepared via laser cladding[J]. Chinese Journal of Lasers,2019,46(7):68-74(in Chinese).
[18] FENG K, CHEN Y, DENG P, et al. Improved high-temperature hardness and wear resistance of Inconel 625 coatings fabricated by laser cladding[J]. Journal of Materials Processing Technology,2017,243:82-91. DOI: 10.1016/j.jmatprotec.2016.12.001
[19] 赵宇, 宋振明, 金剑波, 等. 激光选区熔化成形Ti-5%TiN复合材料在Hank溶液中的电化学腐蚀性能[J]. 中国激光, 2019, 46(9):112-120. DOI: 10.3788/CJL201946.0902005 ZHAO Yu, SONG Zhenming, JIN Jianbo, et al. Electrochemical corrosion properties of Ti-5wt%TiN composites by selective laser melting in Hank's solution[J]. Chinese Journal of Lasers,2019,46(9):112-120(in Chinese). DOI: 10.3788/CJL201946.0902005
[20] HU P, SONG R, LI X, et al. Influence of concentrations of chloride ions on electrochemical corrosion behavior of titanium-zirconium-molybdenum alloy[J]. Journal of Alloys and Compounds,2017,708:367-372. DOI: 10.1016/j.jallcom.2017.03.025
[21] 冯晓甜, 顾宏, 周圣丰, 等. 送粉式激光增材制造 TC4 钛合金熔覆层组织及电化学腐蚀行为的研究[J]. 中国激光, 2019, 46(3):44-53. DOI: 10.3788/CJL201946.0302003 FENG Xiaotian, GU Hong, ZHOU Shengfeng, et al. Microstructure and electrochemical corrosion behavior of TC4 titanium alloy cladding layer prepared with powder feeding laser additive manufacturing[J]. Chinese Journal of Laser,2019,46(3):44-53(in Chinese). DOI: 10.3788/CJL201946.0302003
[22] SHI Y, COLLINS L, BALKE N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution[J]. Applied Surface Science,2018,439:533-544. DOI: 10.1016/j.apsusc.2018.01.047
[23] SONG X, LEI J, GU Z, et al. Boosting wear properties of Inconel 718 superalloy by uniform dispersing graphene nanoplatelets through laser melting deposition[J]. Journal of Alloys and Compounds,2020,834:155086.
[24] 黄新波, 贾建援, 林化春. 钴基合金-碳化钨复合涂层的耐蚀性能[J]. 机械工程材料, 2003, 27(11):49-51. DOI: 10.3969/j.issn.1000-3738.2003.11.016 HUANG Xinbo, JIA Jianyuan, LIN Huachun. Corrosion resistance of Co based carbide composite coating[J]. Materials for Mechanical Engineering,2003,27(11):49-51(in Chinese). DOI: 10.3969/j.issn.1000-3738.2003.11.016
[25] YANG X, LI X, YANG Q, et al. Effects of WC on microstructure and corrosion resistance of directional structure Ni60 coatings[J]. Surface and Coatings Technology,2020,385:125359. DOI: 10.1016/j.surfcoat.2020.125359
-
期刊类型引用(3)
1. 郑步云,陈鑫,雷剑波,王天琪. 热处理对激光熔化沉积18Ni300马氏体时效钢微观组织和力学性能的影响. 表面技术. 2023(03): 388-398 . 百度学术
2. 赵小凤,崔洪芝,姜迪,宋晓杰. 激光熔覆(CrFeNiAl)_(100–x)Mo_x高熵合金涂层的组织及耐磨耐蚀性能. 复合材料学报. 2023(11): 6311-6323 . 本站查看
3. 贾晓慧,胡亚宝,宋欣灵,方艳,雷剑波. 激光熔化沉积WC复合Inconel 718合金微观组织及磨损性能. 表面技术. 2022(12): 329-339 . 百度学术
其他类型引用(3)
-