碳纤维增强聚醚醚酮复合材料骨诱导修复植入体制备及微动摩擦学性能

Preparation and fretting tribological properties of carbon fiber reinforced polyetheretherketone composite osteoinductive repair implants

  • 摘要: 引起植入体无菌松动的主要原因是植入体与骨组织之间的微动磨损。通过层叠法制备了碳纤维(CF)增强聚醚醚酮(PEEK)复合材料,在模拟体温37℃、模拟体液(SBF)润滑条件下,探究CF/PEEK复合材料的基本力学性能和截面微动摩擦学性能。通过改变法向载荷和位移幅值,建立了摩擦力(Ft)-位移幅值(D)曲线、微动运行工况图和摩擦系数曲线,通过三维白光干涉仪、扫描电子显微镜(SEM)对CF/PEEK复合材料进行磨损机制探究。结果表明:随着法向载荷的减少和位移幅值的增加,微动由部分滑移区、混合区向滑移区转变。摩擦系数曲线整体较为平稳,摩擦系数随着法向载荷的增加而降低,随着位移幅值的增加而增加,磨损体积随着载荷和位移幅值的增加而增加。且CF/PEEK复合材料截面也有较好的微动性能,磨损机制主要为磨粒磨损和疲劳磨损。通过对复合材料截面摩擦学特性分析,为CF/PEEK复合材料替代金属植入体提供一定的理论基础。

     

    Abstract: The main reason for the aseptic loosening of the implant is the fretting wear between the implant and the bone tissue. A carbon fiber (CF) reinforced polyetheretherketone (PEEK) composite material was prepared by a layered method. Under simulated body temperature of 37℃ and simulated body fluid (SBF) lubrication conditions, the basic mechanical properties and the fretting tribological properties of the section of CF/PEEK composites were explored. By changing the normal load and displacement amplitude, the frictional force(Ft)-displacement (D) curve, the fretting operating condition diagram and the friction coefficient curve were established. And the wear mechanism of the CF/PEEK composite material was explored through a three-dimensional white light interferometer and a scanning electron microscope (SEM). The results show that with the decrease of the normal load and the increase of the displacement amplitude, the fretting changes from partial slip regime and mixed regime to slip regime. The overall friction coefficient curve is relatively stable. The friction coefficient gradually decreases with the increase of normal load and increases with the rise of displacement amplitude. The wear volume increases with load and displacement amplitude increases. In addition, CF/PEEK composites have better fretting properties, and the main wear mechanisms are abrasive wear and fatigue wear. The analysis of the tribological characteristics of composite materials provides a specific theoretical basis for CF/PEEK composite materials to replace metal implants.

     

/

返回文章
返回