圆形CFRP-钢复合管海水海砂珊瑚混凝土柱轴压性能试验研究

Experimental study on axial compression performance of CFRP-steel composite tube filled circular seawater sea-sand coral concrete columns

  • 摘要: 为了将原状海水海砂珊瑚混凝土更好地直接应用于海洋工程,对12根碳纤维增强树脂复合材料(CFRP)-钢复合管约束海水海砂珊瑚混凝土柱和2根纯钢管约束海水海砂珊瑚混凝土柱进行了单调轴压试验,主要研究参数为钢管径厚比、CFRP层数,得到了试件的轴向应力-应变关系曲线。试验结果表明,试件在轴压作用下,最终呈现柱身有明显剪切滑移线的剪切破坏形式;CFRP的约束作用对试件初始截面刚度影响不明显,对试件线性强化阶段刚度影响显著;随着CFRP层数的增加,试件的极限应力和极限应变均显著提高;随着钢管径厚比的减小,试件的力学性能也相应地提高;结合试验数据对已有FRP-钢复合管约束混凝土强度计算模型进行评估。

     

    Abstract: In order to better directly apply the undisturbed seawater sea-sand coral concrete to marine engineering, this paper performed a monotonous study on 12 carbon fiber reinforced plastics (CFRP)-steel composite tube filled circular seawater sea-sand coral concrete columns and 2 pure steel tube confined seawater sea-sand coral concrete columns. In the axial compression test, the main research parameters are the diameter-thickness ratio of the steel tube and the number of CFRP layers. The test has obtained the axial stress-strain relationship curve of the specimen. The results show that the specimen is in the form of shear failure with obvious shear slip line at the end of the column under axial pressure. The constraint effect of CFRP has no obvious effect on the initial section stiffness of the specimen, but has a significant effect on the stiffness of the specimen in the linear strengthening stage. With the increase of the number of CFRP layers, the ultimate stress and strain of the specimens are significantly increased. With the decrease of the diameter-thickness ratio of the steel tube, the mechanical properties of the specimens increase correspondingly. Combined with the test data, the existing FRP steel composite pipe confined concrete strength calculation model was evaluated.

     

/

返回文章
返回