石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能

Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties

  • 摘要: 发展轻量化、宽频带的微波吸收材料来应对严重的电磁污染是一个巨大的挑战。本文通过熔融沉积成形(FDM)工艺制备出石墨烯(GR)-铁镍合金(FeNi50)-聚乳酸(PLA)复合材料,采用XRD、Raman、SEM和矢量网络分析仪(VNA)对复合材料的物相结构、微观形貌和电磁性能进行表征分析,并讨论了GR-FeNi50质量比对复合材料吸波性能的影响。结果表明,与未添加GR的复合材料相比,复合材料内部形成了触发极化损耗的异质界面,并产生了丰富的褶皱和孔隙,从而增强了微波的多次反射和散射;随着GR-FeNi50质量比的增加,吸波性能先增强、后减弱,当GR-FeNi50质量比为4∶20时,吸波性能最佳,最小反射损耗达到−40.5 dB,有效吸收带宽为4.7 GHz(13.28~18 GHz)。其优异的吸波性能归因于良好的阻抗匹配和界面极化损耗、偶极极化损耗、电导损耗、磁损耗之间的协同作用。此外,与湿化学法制备的吸波材料相比,GR-FeNi50-PLA复合材料在环保、易加工和规模化生产方面具有优势。

     

    Abstract: The development of lightweight, broadband microwave absorbing materials to cope with severe electromagnetic pollution is a great challenge. In this paper, graphene (GR)-iron-nickel alloy (FeNi50)-polylactic acid (PLA) composites were prepared by fused deposition modeling (FDM) process, and the physical structure, micromorphology and electromagnetic properties of the composites were characterized by XRD, Raman, SEM and vector network analyzer (VNA). The effects of the GR-FeNi50 mass ratio on the microwave absorption properties of the composites were discussed. The results show that, compared with the composites without GR addition, heterogeneous interfaces triggering polarization loss are formed inside the composites, and abundant folds and pores are generated, which enhance the multiple reflections and scattering of microwaves. The minimum reflection loss reaches −40.5 dB and the effective absorption bandwidth is 4.7 GHz (13.28-18 GHz). The excellent absorption performance is attributed to the good impedance matching and the synergy between interfacial polarisation loss, dipole polarisation loss, conductivity loss and magnetic loss. In addition, the GR-FeNi50-PLA composite has advantages in terms of environmental friendliness, ease of processing and scale production compared to the absorbing materials prepared by wet chemical methods.

     

/

返回文章
返回