Research progress in testing methods of mechanical properties of textile composite fiber preforms
-
摘要: 纺织复合材料具有质量轻、强度高,可设计性强等诸多优势,在航空航天领域得到广泛应用。纺织预制体的纤维结构对复合材料的最终力学性能有着决定性影响。然而,预制体的纤维结构在织造过程中不可避免地会发生宏观尺寸和微细观结构的变形,甚至产生褶皱缺陷。纺织预制体作为一种柔性骨架,其变形机制十分复杂。采用试验测试来表征预制体的力学变形特性是最直接、最有效的方法,也是建立理论和数值分析模型的基础。本文对纺织复合材料预制体的拉伸、压缩、弯曲、剪切和成型试验等测试方法进行了综述,讨论了不同测试方法的优缺点及适用条件,对后续的研究工作进行了展望。本研究将为预制体力学测试技术的改进、测试标准的建立和成型过程中的准确控形提供理论指导,对纺织复合材料的结构设计和工程应用起到推动作用。Abstract: Textile composites are widely used in aerospace field because of its advantages of light weight, high strength and strong designability.The fiber structure of textile preform determines the final mechanical properties of composites. However, the fiber structure of preform inevitably undergoes macro-scale and micro-structure deformation during the weaving process, and even wrinkle defects. The preform is a flexible skeleton, and its deformation mechanism is very complicated. Test is the most direct method to characterize the mechanical properties of preform, and it is also the basis of establishing theoretical and numerical analysis model. In this paper, the basic test methods of textile composite preform, such as tensile test, compression test, bending test, shear test and forming test, are reviewed. The advantages, disadvantages and applicable conditions of different test methods are discussed, and the future research work is prospected. The work in this paper will provide theoretical guidance for the improvement of preform mechanics testing technology, the establishment of testing standards and the accurate control of shape during the forming process. It will promote the structural design and engineering application of textile composites.
-
Keywords:
- textile composites /
- preform /
- mechanical properties /
- test method /
- deformation mechanism
-
齿轮和轴类零件常被用于高速、振动、摩擦磨损等恶劣工况,易产生断裂和磨损等失效[1-2]。此类零件多采用20 CrMnTi低碳钢材料,为提高零件使用寿命,使用电沉积方法在零件表面制备镀层增强零件性能已成为常用方法。Ni-P合金镀层具有良好的耐磨、耐腐蚀性能,还具有较高的硬度,因此被广泛应用于化工、汽车和机械等行业[3-5]。随着行业的进步与发展,Ni-P镀层已难以满足复杂特殊的使用环境,向镀液中添加纳米颗粒针对性的提升镀层性能已成为研究的热门方向[6]。目前一元纳米颗粒复合电沉积技术已比较成熟,如添加Al2O3、WC、SiC等硬质颗粒提升复合镀层的硬度及耐磨损性能[7-10],添加具有自润滑特性的BN(h)、MoS2、PTFE等降低复合镀层的摩擦系数[11-13],添加部分纳米颗粒还可以提高复合镀层的耐腐蚀性能和抗高温氧化性能[14-18]。
近年来部分学者已经对二元纳米颗粒复合镀层进行研究,徐义库[19]等通过脉冲电沉积法制备Ni-Mo-SiC-TiN复合镀层,两种纳米颗粒均匀的分散在Ni-Mo基体中显著提升了镀层的耐磨和耐腐蚀性;张银[20]等使用电沉积法制备不同浓度配比的 Ni-Co-P-BN(h)-Al2O3复合镀层,结果表明二元纳米颗粒掺杂配比会对纳米复合镀层表面产生巨大影响,且二元纳米颗粒复合镀层的耐磨性优于一元纳米颗粒复合涂层;王浩鑫[21]采用单脉冲电沉积制备Ni-TiC-GO复合镀层,该镀层具有优秀的减摩擦和耐磨性能。目前,研究对于二元纳米复合电沉积技术尤其是电沉积Ni-P-WC-BN(h)二元纳米复合镀层的表面结构和减磨耐磨性能的研究未见报道。
因此本文采用超声-脉冲电沉积法制备不同浓度BN(h)纳米颗粒的Ni-P-WC-BN(h)二元纳米颗粒复合镀层,与Ni-P、Ni-P-WC复合镀层对比,探究BN(h)质量浓度对复合镀层组织结构和减磨耐磨性能的影响
1. 实 验
1.1 基材预处理
采用20 CrMnTi钢为基体,其尺寸为40 mm×16 mm×12 mm。表面使用320#、800#、
1200 #、2000#金相砂纸打磨→抛光→去离子水超声清洗→电净除油→去离子水超声清洗并吹干→强活化→去离子水超声清洗并吹干→弱活化→去离子水超声清洗并吹干待用。1.2 实验条件
试验采用单因素实验法,首先通过预实验确定电沉积工艺参数、基础镀液成分(表1所示)和WC颗粒的最优浓度(30 g/L,纯度99.9%,平均粒度为50 nm)。实验装置如图1所示,工艺参数:电流密度3 A/dm2,脉冲频率2 kHz,占空比0.8,镀液温度50℃,电镀时间60 min,超声功率210 W,搅拌速率150 r/min,;阳极为纯Ni板。
表 1 电沉积Ni-P镀液配方Table 1. Formulation of electrodeposition Ni-P plating solutionElement Concentration/(g·L−1) NiSO4·6H2O 230 NiCl2·6H2O 30 H3PO3 5 NaH2PO2·H2O 8 NaC6H8O7·H2O 80 H3BO3 30 C₁₂H₂₅NaSO₄ 0.1 SC(NH₂)₂ 0.02 C₇H₅NO₃S 1 以上述内容为基础向镀液中分别添加15 g/L、20 g/L、25 g/L、30 g/L的BN(h)纳米颗粒(纯度99.9%,平均粒度为200 nm)。探究BN(h)添加量对Ni-P-WC-BN(h)复合镀层表面形貌、组织成分、显微硬度及耐磨性能的影响。
1.3 测试方法
试样制备完成后,使用线切割将样品切割为10 mm×10 mm×6 mm的测试试样进行下一步测试。使用Quanta FEG250扫描电子显微镜、能谱仪X Flash Detector 5030 BRUKER)对试样表面的镀层形貌和元素分布进行观察。采用Rigaku SmartLab SE型X射线衍射仪对复合镀层的物相结构进行分析。采用斯特尔显微硬度仪(Struers)对镀层的显微硬度进行测试,实验载荷
1000 g,加载时间10 s,在不同位置测量五次取平均值。采用CFT-I型综合材料表面性能测试仪(兰州中科凯华科技)对复合镀层的摩擦系数进行测试,磨件为Si3N4对磨球(直径4 mm,表面粗糙度Ra=0.06 μm,硬度为1400 -1700 HV1),加载载荷100 g,往复次数200次/min,往复行程4 mm,时长30 min。采用日本Keyence VK-X1000激光显微镜拍摄磨痕处形貌及磨痕截面轮廓并计算镀层磨损体积损失。2. 结果与讨论
2.1 复合镀层的微观形貌及元素分布
图2展示了不同镀液配方复合镀层的表面微观形貌,(a)图Ni-P镀层表面呈胞状结构,胞状结构的直径较大且分布不均匀。在镀液中加入WC纳米颗粒后,(b)图Ni-P-WC复合镀层表面和(a) Ni-P镀层相比粗糙,这是由于部分WC团聚被Ni-P镀层包裹在镀层内部,镀层表面产生了单元凸起,改变了阳极和阴极的间距,凸起部分受到电场力较大优先生长因此形成不平整的胞状物结构[22]。(c1)到(c4)图为在镀液中进一步添加15 g~30 g/L的BN(h)纳米颗粒的Ni-P-WC-BN(h)复合镀层表面的微观形貌,与Ni-P-WC复合镀层相比,随着BN(h)含量的增加,镀层表面平整度略有提高,究其原因,一方面两颗粒协同作用在一定程度上减小了团聚[20],另一方面还可能与BN(h)颗粒具有自润滑特性,层与层之间靠爱德华力连接易产生滑动有关[23]。但BN(h)浓度超过某一极值,镀液中纳米颗粒浓度过高从而使纳米颗粒团聚,阴极附近导电性下降从而使沉积效率降低。
图 2 复合镀层表面SEM图像 (a) Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 2. SEM image of composite plated surface (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)图3为不同镀液配方复合镀层的截面形貌及元素分布。WC纳米颗粒的加入后镀层厚度有所增加,但镀层内部存在裂痕等缺陷;加入BN(h)纳米颗粒后,镀层平整性略有提高且镀层内部缺陷减少,镀层厚度先增加后减小,在BN(h)浓度为25 g/L时最厚达80.0 μm。随着BN(h)浓度进一步增加,镀液中纳米颗粒浓度过高导致阴极导电性下降从而降低沉积效率,镀层厚度减小。
图 3 复合镀层截面SEM图像及截面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 3. SEM image of composite plating cross-section and section element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)由图中元素分布可以看出,WC和BN(h)纳米镶嵌在镀层中,镀层和基体的界面交界处存在约50 μm的中间区,该区域元素相互渗透,有助于改善镀层和基体的结合。
图4为不同镀镀液配方复合镀层表面元素分布,从元素分布图中可以看出Ni、P、W、B均匀分散在镀层中,并无明显团聚现象,这说明在该工艺参数下WC纳米颗粒和BN(h)纳米颗粒在镀层中分散效果较好。
图 4 复合镀层表面元素分布 (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h) (20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)Figure 4. Composite plating surface element distribution (a)Ni-P,(b)Ni-P-WC,(c1)Ni-P-WC-BN(h)(15 g/L),(c2) Ni-P-WC-BN(h)(20 g/L),(c3) Ni-P-WC-BN(h)(25 g/L),(c4) Ni-P-WC-BN(h)(30 g/L)2.2 复合镀层的EDS能谱及相结构
图5为二元纳米颗粒掺杂下Ni-P-WC-BN(h)复合镀层的EDS能谱图,从图中可以看出,所制备的二元纳米复合镀层表面均含有Ni、P、W、C、B等元素,各元素含量随着BN(h)浓度的变化而变化。随着BN(h)添加量从15 g/L增加到30 g/L,B元素质量分数呈先波动增大后减小趋势,在BN(h)浓度为25 g/L时B元素的质量分数达到最大值0.85%;镀层表面W元素质量分数先减小后增大,与B元素呈相反趋势;镀层中P元素质量分数逐渐减小。这说明通过超声-脉冲电沉积法制备了Ni-P-WC-BN(h)二元纳米复合镀层。Ni元素的质量分数随着BN(h)浓度的提升而增大,这是因为镀液中加入WC和BN(h)两种纳米颗粒后,不同纳米颗粒相互作用,减小团聚,镀层表面吸附的颗粒数目增加,为Ni原子提供更好的成核条件[23],从而增大Ni元素的沉积量。
图6所示为不同复合镀层的XRD图谱,镀层在2θ为44.507°、51.846°、76.370°的位置上出现了的Ni峰,分别对应(111)、(200)、(220)晶面,与Ni-P-WC复合镀层相比,随着BN(h)浓度的增加,Ni-P-WC-BN(h)复合镀层的三个晶面方向出现了明显的结晶取向,且生长晶面以(111)面为主,这是由于Ni的结晶取向同时受到生长速度、方向的影响外还受到晶体竞争模式的影响[24];Ni-P-WC复合镀层的衍射图谱中,2θ为31.474°、35.626°、48.266°的位置出现了WC的特征峰,这说明WC颗粒成功沉积在复合镀层中;在Ni-P-WC-BN(h)复合镀层的衍射图谱中并没有表现出明显的BN(h)峰,但是可以检测到BN(h),结合图5中B元素的质量分数可知这可能是BN(h)颗粒沉积量较少所致。
表2为不同配方镀层中Ni(111)元素的晶粒尺寸数据,其中FWHM为半幅宽,D为镀层中垂直于晶面的晶粒尺寸。随着BN(h)浓度的提升,Ni(111)的晶粒尺寸先减小后增大,最小晶粒尺寸为8.9 nm,这是因为BN(h)对晶粒有一定的细化作用[25],合适浓度的BN(h)可以减小晶粒尺寸,但是BN(h)浓度过高会使晶粒尺寸增大。
表 2 不同复合镀层中Ni(111)元素的晶粒尺寸Table 2. Grain size of Ni(111) elements in different composite coatingsType of plating 2θ/(°) FWHM Diameter/nm Ni-P 44.480 0.941 9.2 Ni-P-WC 44.670 0.848 10.2 Ni-P-WC-BN(h)(15 g/L) 44.480 0.894 9.7 Ni-P-WC-BN(h)(20 g/L) 44.340 0.908 9.5 Ni-P-WC-BN(h)(25 g/L) 44.660 0.968 8.9 Ni-P-WC-BN(h)(30 g/L) 44.710 0.677 12.8 2.3 复合镀层的硬度
不同复合镀层的显微硬度测试结果如图7所示,从图中可知,Ni-P镀层硬度在700 HV1左右,添加WC纳米颗粒后镀层的显微硬度为
1141 HV1,这是因为WC在镀层中弥散分布,对镀层起到弥散强化作用[26],根据晶界强化原理,晶粒越细小镀层的显微硬度越高,WC纳米颗粒自身硬度较高且可以使镀层晶粒细化从而提高硬度。加入BN(h)后,随着BN(h)浓度从15 g/L到30 g/L的过程中,Ni-P-WC-BN(h)复合镀层硬度呈先增大后减小的变化趋势,在BN(h)浓度为25 g/L时Ni-P-WC-BN(h)复合镀层的硬度达到最大值115 6HV1,硬度最大值与Ni-P-WC复合镀层相当。分析认为, 纳米粒子在沉积过程中分为弱吸附和强吸附[27],随着镀液中纳米颗粒浓度增加,更多的颗粒发生强吸附作用,从而使镀层中纳米颗粒的含量增加从而使镀层硬度提升,但当其添加量过大时镀层易产生析氢现象[28],使镀层厚度下降,因此硬度下降。2.4 复合镀层的减磨耐磨性能
不同配方复合镀层的摩擦系数如图8所示,各复合镀层的摩擦系数均存在明显的摩擦系数急剧上升后趋于平稳的“磨合”阶段[29]。分析认为随着磨损试验的进行镀层表面的磨屑不断在磨痕处堆积,最终在压应力的作用下产生塑性变形使摩擦阻力增大,从而导致摩擦系数增大。
相同条件下,未添加纳米颗粒的Ni-P镀层的摩擦系数较大。摩擦系数和复合镀层中的硬质颗粒的尺寸、均匀性和数量有关[30],添加WC纳米颗粒后,纳米WC嵌入镀层,使晶粒细化并致密镀层组织,且WC自身硬度较高,因此可以减小摩擦时的接触面积从而降低摩擦系数。在Ni-P-WC镀层基础上添加BN(h)颗粒,随着BN(h)浓度增加,Ni-P-WC-BN(h)复合镀层摩擦系数呈先减小后增大的变化趋势。
摩擦磨损实验结束后,各镀层的磨损体积如表3所示,由数据可以看出Ni-P镀层磨损体积最大;加入WC纳米颗粒后镀层的磨损体积显著减小;加入BN(h)纳米颗粒后,随着浓度的提升,复合镀层的磨损量先减小后增大,Ni-P-WC-BN(h)(25 g/L)复合镀层的磨损体积最小,与Ni-P-WC复合镀层相当,显著优于其他镀层。将磨损体积与图5硬度测试结果对比,可以得出镀层磨损量和镀层硬度呈负相关。
表 3 镀层磨损体积Table 3. Plating wear volumeType of plating Wear volume /μm3 Ni-P 459553 Ni-P-WC 51945 Ni-P-WC-BN(h)(15 g/L) 256137 Ni-P-WC-BN(h)(20 g/L) 135765 Ni-P-WC-BN(h)(25 g/L) 53587 Ni-P-WC-BN(h)(30 g/L) 102966 各镀层磨痕形貌、轮廓线如图9所示,不同区域元素分布如表4所示。由磨痕形貌与图3镀层厚度对比及磨痕元素分布可知,磨损区域均不含Fe元素,摩擦磨损试验过程中镀层并未磨穿。Ni-P镀层磨痕与其他镀层磨痕相比较为明显,且磨痕处呈明显的黏着现象和犁沟状形貌,取磨痕中部长度为310 μm的截面轮廓线可知磨损过程中Ni-P复合镀层的磨损量较大,Ni-P涂层的硬度较低,易产生剥落现象,磨痕处含有少量Si元素,这说明Si3N4对磨球在摩擦磨损试验中摩擦热的作用下转移到镀层表面产生黏着磨损现象。镀层中加入WC纳米颗粒后,Ni-P-WC复合镀层磨痕表面无明显的犁沟形貌,这是因为WC颗粒在镀层中起到弥散强化作用,大幅度提升了复合镀层的硬度,减小了摩擦的接触面积,在磨损过程中,镀层先产生塑形形变,当形变量过大时部分WC颗粒脱落,形成镀层、WC粉末、摩擦副之间的三体磨损[31],此过程中摩擦热大幅增加导致氧化磨损,涂层的氧含量大幅提高。
图 9 复合镀层磨痕SEM(左)、磨痕形貌(中)、磨痕轮廓线(右):(a)Ni-P (b)Ni-P-WC (c)Ni-P-WC-BN(h)(15 g/L) (d)Ni-P-WC-BN(h)(20 g/L) (e)Ni-P-WC-BN(h)(25 g/L) (f)Ni-P-WC-BN(h)(30 g/L)Figure 9. SEM of composite plating wear marks (left), wear mark morphology (center), and wear mark contour lines (right): (a) Ni-P (b) Ni-P-WC (c) Ni-P-WC-BN(h)(15 g/L) (d) Ni-P-WC-BN(h)(20 g/L) (e) Ni-P-WC-BN(h)(25 g/L) (f) Ni-P-WC-BN(h)(30 g/L)表 4 磨痕元素分布Table 4. Distribution of abrasion elementsArea Atomic fraction of an element at% Ni O P Si W B Au 1 75.01 14.08 5.15 2.71 — — 2.34 2 90.1 — 6.4 — — — 3.49 3 23.16 70.39 1.49 — 2.87 — 1.28 4 84.64 2.48 3.43 — 6.14 — 3.31 5 56.59 31.00 3.36 1.35 5.41 0.35 1.93 6 63.12 4.00 3.58 — 3.13 23.59 2.60 7 37.49 53.33 2.07 1.16 3.40 0.76 1.79 8 37.68 52.95 2.56 1.06 4.05 0.2 1.50 9 66.25 9.97 4.38 0.01 4.05 14.04 1.29 10 72.42 15.68 3.59 0.15 5.63 0.13 2.42 11 58.76 7.96 3.03 0.11 4.56 20.69 4.88 12 46.65 27.96 1.23 4.89 4.47 8.99 5.82 BN(h)纳米颗粒加入后磨痕形貌如图9(c)-(f)所示,BN(h)添加量为15 g/L时,对比图8中摩擦系数曲线及磨痕处轮廓线可以发现Ni-P-WC-BN(h)(15 g/L)复合镀层发生了较为严重的剥落现象,剥落的镀层在磨痕处随摩擦副一起在镀层表面摩擦,从而导致摩擦系数短时内上升,随着摩擦实验的进行,剥落的镀层被压应力压碎,摩擦系数也逐渐减小到该涂层的正常水平;BN(h)添加量为20 g/L时,镀层的剥落现象大幅减少,磨痕处的Si元素含量增加,镀层存在黏着磨损现象,此时摩擦系数略小于Ni-P-WC复合镀层,但是由于BN(h)沉积量较少,因此减磨能力有限;BN(h)添加量为25 g/L时,镀层基本无剥落现象,磨痕较为平整,这是因为BN(h)微粒在镀层中和WC共沉积,呈弥散分布,由于BN(h)为六方结构,层与层之间靠范德华力连接,在摩擦中易产生滑动,一方面滑动的BN(h)可以在镀层和对磨球间形成固体润滑膜减小摩擦,另一方面BN(h)可以在摩擦过程中填补磨痕处的缺陷,使磨痕更加平整,此时摩擦形式为磨料磨损,伴随极微的黏着磨损;BN(h)添加量为30 g/L时,磨痕呈现较为明显的犁沟状并伴随着严重的黏着现象,此时纳米浓度颗粒浓度过高,电沉积效率下降,镀层硬度和厚度减小,镀层中Si元素含量大幅提高,镀层主要磨损形式为黏着磨损。
3. 结 论
(1)不同纳米颗粒的质量浓度对纳米复合镀层表面的微观形貌和物相结构有重要影响,Ni-P镀层表面呈现明显的胞状结构;加入WC纳米颗粒后,Ni-P-WC复合镀层表面呈不平整“菜花”状形貌;加入BN(h)纳米颗粒后,Ni-P-WC-BN(h)复合镀层微观形貌无明显变化,镀层平均晶粒尺寸先减小后增大,合适浓度的BN(h)对晶粒有一定的细化作用。
(2)试验范围内,纳米颗粒的添加可以有效的提升复合镀层的显微硬度和厚度。Ni-P-WC和Ni-P-WC-BN(h)(25 g/L)复合镀层硬度最大,平均硬度达到
1150 HV1,纳米颗粒浓度过低或者过高均会降低镀层的显微硬度。(3)试验范围内,Ni-P镀层在摩擦磨损实验中存在较为严重的黏着和剥落现象且磨损量较大;加入WC纳米颗粒后,镀层无黏着现象,磨损形式为磨料磨损和氧化磨损,此时摩擦系数较小且磨损量较低;进一步加入BN(h)纳米颗粒后,随着BN(h)浓度的提升,镀层的摩擦系数和磨损量先减小后增大,在BN(h)质量浓度为25 g/L时镀层的摩擦系数最低,在保证镀态高硬度的同时,摩擦系数较Ni-P-WC复合镀层降低22.6%,这说明二元纳米颗粒掺杂发挥了协同生长的优势,具有更好的减磨耐磨性能。
-
图 6 相框剪切和单向偏轴拉伸变形示意图[61]
Figure 6. Schematic representation of picture frame and uniaxial bias extension deformation[61]
Fframe—Measured force; Lframe—Length of the frame; γ12/2—Half shear angle; θ—Frame angle; Fshear—Shear force; Lfabric—Sample’s clamping length; uframe—Measured displacement; H—Effective length of specimen; L0—Initial diagonal length of zone A; d—Tensile displacement; Fbias—Tensile load; α—Half frame angle
表 1 双轴拉伸测试的试验参数
Table 1 Experimental parameters of biaxial tensile test
Material Sample center size/mm Sample arm size/mm Strain measurement method Loading method Ref. Coated woven fabrics 700×700 260×100 135 mm linear displacement transducers Biaxial bidirectional loading [16] Coated woven fabrics 300×300 150×25 100 mm linear displacement transducers Biaxial unidirectionalloading [16] Non-crimp 3D orthogonal woven reinforcement 60×60 145×60 Digital image correlation (DIC) Biaxial bidirectional loading [18] URETEK3216LV 160×160 200×160 28 mm needle extensometers Biaxial unidirectional loading [14] Envelope material 50×50 200×50 High-precision displacement sensors Plane loading of vertical specimen [19] HAA envelope 100×100 220×100 High-speed photography Biaxial bidirectional loading [12] Uretek5876 160×160 160×200 20 mm needle extensometers Biaxial bidirectional loading [15] Note: HAA—High altitude airship. 表 2 压缩测试的试验参数
Table 2 Experimental parameters of compression test
Material Top plate Sample
size/mmSpeed/
(mm·min-1)Strain measurement
methodRef. Spacer fabric Not mentioned 100×100 12 Micro-CT [30] Hexcel G986 twill 2/2 carbon fabric Diameter: 100 mm — 0.5 Micro-CT [23] Interlock fabric Not mentioned 100×100 1 Digital microscope VHX-1000 [21] 2/2 twill weave fabric Not mentioned 100×100 0.5 Micro-CT [31] Single layer fabric Surface areas: 15 cm2 50×50 1 Micro-CT [22] Woven and knitted fabrics Diameter: 100 mm 140×140 1 High resolution microscope [24] Carbon fibre plain weave Diameter: 50 mm 60×60 1 Imetrum video gauge system and Micro-CT [32] 表 3 弯曲测试的试验参数
Table 3 Experimental parameters of bending test
Material Test method Sample size/mm Speed Temperature/℃ Ref. Four structural carbon fiber fabrics Cantilever test 300×300 Quasi-static No [37] Monoply and multiply stitched fabric Cantilever test 300×150 Quasi-static No [40] Monoply/multiply and 3D carbon fiber fabric Cantilever test Monoply: 150/180×50
Multiply: 100×50
3D: 405×70×15Quasi-static No [41] PPS-carbon satin prepregs Cantilever test 200×50 Quasi-static 320, 345, 360, 380 [46] UHMWPE fiber reinforced TPU “Vertical”
cantilever test250×20 Quasi-static 80, 100, 120 [47] 5HS satin weave impregnated with Cycom 5320 “Vertical”
cantilever test150×50 3, 6, 9 mm/s 20, 50, 70, 90 [44] Unidirectional carbon
fiber reinforced PA6Cantilever/
three-point test23×15,53×15
Span: 20/500.01, 0.1, 0.5
mm/min200, 230, 260 [48] Interlock reinforcement Three-point test 200×30×15
Span: 116— No [49] Glass fiber twill/UD prepreg Rheometer test 15×20 0.1, 1, 10 r/min 60, 150, 210, 220, 260 [50] Unidirectional carbon
fiber reinforced Nylon 6Rheometer test (25-35)×25 0.6, 6, 19.2, 60 °/s 240, 26, 280 [51] Carbon fiber plain weave
fabric and Silicone oilsRheometer test 60×70 0.1, 1, 10 r/min No [52] Notes: PPS—Polyphenylene sulfite; TPU—Thermoplastic polyurethane; UHMWPE—Ultrahigh molecular weight polyethylene; UD—Unidirectional. 表 4 相框剪切测试的试验参数
Table 4 Experimental parameters of picture frame test
Material Sample size/mm Speed/(mm·min−1) Strain measurement method Ref. 3D angle interlock fabric 100×100 10 Manual image analysis [58] Non-crimp 3D orthogonal weave preform 180×180 10 Digital image correlation (DIC) [18] Plain-woven Kevlar@ 49 75×75
100×100
125×1255 CCD camera [67] NCFs with chain and tricot-chain stitches 210×210 20 1230-pixel camera [65] Twintex fabric 219×219 — Zeiss V20 stereo microscope [62] UD-NCF and Hexcel’s woven fabric 170×170 100 Two video cameras [61] F-12 aramid fabric 127×127 — DIC [66] Note: NCFs—Non-crimp fabrics. 表 5 偏轴拉伸测试的试验参数
Table 5 Experimental parameters of bias extension test
Material Test method Sample size/mm Speed/(mm·min−1) Strain measurement method Ref. 4-harness satin weave fabric and epoxy resin Bias extension test 225×90 20 DIC [78] Nylon 66 woven engineering fabric Bias extension test 200×100 10 CCD camera [56] Non-crimp 3D orthogonal weave preform Bias extension test 200×100 3 Digital camera [18] F-12 aramid fabric Bias extension test 300×50 — DIC [66] 2×2 twill-weave carbon fabric Bias extension test 200×100
300×150
400×200200 Casio HS EX-ZR700 digital camera [77] NCFs with chain and tricot-chain stitches Bias extension test 225×90 20 1230-pixel camera [65] Roving glass fibre/
polypropylene (PP)Bias extension test 250×100 100,1000 and 10000 PHANTOM V711 high-speed camera [80] UD-NCF Bias extension test 320×160 100 Digital video camera [61] Plain weave fabric Bias extension test 100×50 10 DIC [56] Plain weave glass fabric Biaxial bias extension test 210×210
240×240200 Digital camera (Canon power shot A 700) [73] Twintex Multi-step biaxial bias
extension (MBBE) test70×70 4 Creaform viuscan portable 3D scanner [74] 12 K carbon plain
weave woven fabricInfiltrated bias-extension
test (IBET)280×120 100, 350, 700 A camera system [79] 表 6 半球成型测试的试验参数
Table 6 Experimental parameters of hemispherical forming test
Material Punch/Circular
hole size/mmSample
size/mmSpeed/
(mm·min−1)Strain measurement
methodBlank-holder
pressureRef. 3D warp interlock preforms 150/160 300×300 — “tracers” yarns 0.2 MPa [85] Non-crimp carbon fabrics 150/287 Diameter 380 90 “shape-from-focus” (SFF) 9.4 kg [87] Bi-axial carbon fibre NCF 100/104 300×300 100 Grid strain analysis (GSA) 1200 N [90] Stitched UD-NCF 100/120 350×350 100 Optical strain analysis 750 g [61] Twill 2/2 woven fabric 100/122 260×260 2700 CCD camera 0.025, 0.075 MPa [88] 3D warp interlock/2D plain weave fabrics 150/150 250×250 45 Digital camera 0.2 MPa [13] Plain-weave fabric 150/160 400×400 30 Optical strain analysis 0.05 MPa [92] Triaxial fabrics 150/160 300×300 45 Video camera — [5] Note: CCD—Charge coupled device. 表 7 复杂结构成型测试的试验参数
Table 7 Experimental parameters of special-shaped forming test
Material Forming
experimentSample
size/mmSpeed/
(mm·min−1)Strain measurement
methodBlank-holder
pressureRef. Glass/polypropylene
plain weave fabricDouble dome benchmark 470×270 200 Manual image analysis 100 N [63] Plain woven composite
fabricDouble dome benchmark 470×270 20 Manual image analysis 100 N [93] Glass-polypropylene (PP) Double dome benchmark 452×640 100 Manual image analysis No [94] G1151@ interlock fabric Tetrahedral shape — — Optical module 480 N [95] G1151@ interlock fabric Prismatic shape — 30 Digital Image
Correlation (DIC)9.22 N/yarn [96] -
[1] 杜善义. 先进复合材料与航空航天[J]. 复合材料学报, 2007, 24(1):1-12. DOI: 10.3321/j.issn:1000-3851.2007.01.001 SHANYI D. Advanced composite materials and aerospace engineering[J]. Acta Materiae Compositae Sinica,2007,24(1):1-12(in Chinese). DOI: 10.3321/j.issn:1000-3851.2007.01.001
[2] JIAO W, CHEN L, XIE J, et al. Effect of weaving structures on the geometry variations and mechanical properties of 3D LTL woven composites[J]. Composite Structures,2020,252:112756.
[3] 邢丽英, 包建文, 礼嵩明, 等. 先进树脂基复合材料发展现状和面临的挑战[J]. 复合材料学报, 2016, 33(7):1327-1338. XING L Y, BAO J W, LI S M, et al. Development status and facing challenge of advanced polymer matrix composites[J]. Acta Materiae Compositae Sinica,2016,33(7):1327-1338(in Chinese).
[4] IWATA A, INOUE T, NAOUAR N, et al. Coupled meso-macro simulation of woven fabric local deformation during draping[J]. Composites Part A: Applied Science and Manufacturing,2019,118:267-280. DOI: 10.1016/j.compositesa.2019.01.004
[5] XIAO S, WANG P, SOULAT D, et al. An exploration of the deformability behaviours dominated by braiding angle during the forming of the triaxial carbon fibre braids[J]. Composites Part A: Applied Science and Manufacturing,2020,133:105890.
[6] 中国纺织总会标准化研究所. 纺织材料和纺织制品压缩性能第1部分: 耐久压缩特性的测定: FZ/T 01051.1—1998[S]. 北京: 中国标准出版社, 1998. Standardization Research Institute of China Textile General Association. Textile materials and textile products-Compression properties-Part 1: Determination of lasting compression characteristics: FZ/T 01051.1—1998[S]. Beijing: China Standards Press, 1998(in Chinese).
[7] 国家质量技术监督局. 纺织品织物弯曲长度的测定: GB/T 18318—2001[S]. 北京: 中国标准出版社, 2001. The State Bureau of Quality and Technical Supervision. Textile fabrics-Determination of bending length: GB/T 18318—2001[S]. Beijing: China Standards Press, 2001(in Chinese).
[8] 中国国家标准化管理委员会. 纺织品织物拉伸性能第1部分: 断裂强力和断裂伸长率的测定(条样法): GB/T 3923.1—2013[S]. 北京: 中国标准出版社, 2013. Standardization Administration of the People's Republic of China. Textiles-Tensile properties of fabrics-Part 1: Determination of maximum force and elongation at maxi-mum force using the strip method: GB/T 3923.1—2013[S]. Beijing: China Standards Press, 2013(in Chinese).
[9] NAOUAR N, VIDAL-SALLÉ E, SCHNEIDER J, et al. Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography[J]. Composite Structures,2014,116:165-176. DOI: 10.1016/j.compstruct.2014.04.026
[10] 黄小双, 姚远, 彭雄奇, 等. 考虑双拉耦合的复合材料编织物各向异性超弹性本构模型[J]. 复合材料学报, 2016, 33(10):2319-2324. HUANG X S, YAO Y, PENG X Q, et al. Anisotropic hyperelastic constitutive model with biaxial tension coupling for woven fabric composites[J]. Acta Materiae Compositae Sinica,2016,33(10):2319-2324(in Chinese).
[11] ASTM. Standard test method for breaking force and elongation of textile fabrics (strip method): ASTM D5035[S]. West Conshohocken: ASTM, 2019.
[12] ISO. Rubber-or plastics-coated fabrics—Determination of tensile strength and elongation at break: ISO 1421[S]. Geneva: ISO,1998.
[13] ABTEW M A, BOUSSU F, BRUNIAUX P, et al. Influences of fabric density on mechanical and moulding behaviours of 3D warp interlock para-aramid fabrics for soft body armour application[J]. Composite Structures,2018,204:402-418. DOI: 10.1016/j.compstruct.2018.07.101
[14] CHEN J, CHEN W, WANG M, et al. Mechanical behaviors and elastic parameters of laminated fabric URETEK3216LV subjected to uniaxial and biaxial loading[J]. Applied Composite Materials,2017,24(5):1107-1136. DOI: 10.1007/s10443-016-9576-2
[15] GAO C, CHEN W, SHI T, et al. Response surface characterization for biaxial tensile properties of envelope fabrics under multiple stress ratios[J]. Composite Structures,2019,230:111482.
[16] BRIDGENS B, GOSLING P, JOU G T, et al. Inter-laboratory comparison of biaxial tests for architectural textiles[J]. Journal of the Textile Institute,2012,103(7):706-718. DOI: 10.1080/00405000.2011.602824
[17] SHI T, CHEN W, GAO C, et al. Biaxial constitutive relationship and strength criterion of composite fabric for airship structures[J]. Composite Structures,2019,214:379-389. DOI: 10.1016/j.compstruct.2019.02.028
[18] CARVELLI V, PAZMINO J, LOMOV S V, et al. Deformability of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Science and Technology,2012,73:9-18. DOI: 10.1016/j.compscitech.2012.09.004
[19] MENG J, LV M, QU Z, et al. Mechanical properties and strength criteria of fabric membrane for the stratospheric airship envelope[J]. Applied Composite Materials,2016,24(1):77-95.
[20] MIHAILOVIC T V, ASANOVIC K A, CEROVIC D D. Structural design of face fabrics and the core as a premise for compression behavior of 3D woven sandwich fabric[J]. Jour-nal of Sandwich Structures & Materials,2016,20(6):718-734.
[21] VERNET N, TROCHU F. Analysis and modeling of 3D Interlock fabric compaction behavior[J]. Composites Part A: Applied Science and Manufacturing,2016,80:182-193. DOI: 10.1016/j.compositesa.2015.10.024
[22] YOUSAF Z, POTLURI P, WITHERS P J, et al. Digital element simulation of aligned tows during compaction validated by computed tomography (CT)[J]. International Journal of Solids and Structures,2018,154:78-87. DOI: 10.1016/j.ijsolstr.2017.05.044
[23] NGUYEN Q T, VIDAL-SALLÉ E, BOISSE P, et al. Mesoscopic scale analyses of textile composite reinforcement compaction[J]. Composites Part B: Engineering,2013,44(1):231-241. DOI: 10.1016/j.compositesb.2012.05.028
[24] WEI K, LIANG D, MEI M, et al. A viscoelastic model of compression and relaxation behaviors in preforming process for carbon fiber fabrics with binder[J]. Composites Part B: Engineering,2019,158:1-9. DOI: 10.1016/j.compositesb.2018.09.038
[25] MAHADIK Y, HALLETT S R. Effect of fabric compaction and yarn waviness on 3D woven composite compressive properties[J]. Composites Part A: Applied Science and Manufacturing,2011,42(11):1592-1600. DOI: 10.1016/j.compositesa.2011.07.006
[26] MAHADIK Y, BROWN K A R, HALLETT S R. Characterisation of 3D woven composite internal architecture and effect of compaction[J]. Composites Part A: Applied Science and Manufacturing,2010,41(7):872-880. DOI: 10.1016/j.compositesa.2010.02.019
[27] 蒋建军, 陈星, 邓国力, 等. 嵌套效应对单向织物压缩行为的影响[J]. 复合材料学报, 2017, 34(11):2463-2472. JIANG J J, CHEN X, DENG G L, et al. Effect of nesting on the compaction behavior of unidirectional fabrics[J]. Acta Materiae Compositae Sinica,2017,34(11):2463-2472(in Chinese).
[28] GREEN S D, LONG A C, EL SAID B S F, et al. Numerical modelling of 3D woven preform deformations[J]. Compo-site Structures,2014,108:747-756. DOI: 10.1016/j.compstruct.2013.10.015
[29] DAELEMANS L, TOMME B, CAGLAR B, et al. Kinematic and mechanical response of dry woven fabrics in through-thickness compression: Virtual fiber modeling with mesh overlay technique and experimental validation[J]. Composites Science and Technology,2021,207:108706.
[30] HOU X, HU H, SILBERSCHMIDT V V. A study of computational mechanics of 3D spacer fabric: Factors affecting its compression deformation[J]. Journal of Materials Science,2012,47(9):3989-3999. DOI: 10.1007/s10853-012-6252-2
[31] THOMPSON A J, EL SAID B, IVANOV D, et al. High fidelity modelling of the compression behaviour of 2D woven fabrics[J]. International Journal of Solids and Structures,2018,154:104-113. DOI: 10.1016/j.ijsolstr.2017.06.027
[32] VALKOVA M, ANTHONY D B, KUCERNAK A R J, et al. Predicting the compaction of hybrid multilayer woven composite reinforcement stacks[J]. Composites Part A: Applied Science and Manufacturing,2020,133:105851.
[33] SYERKO E, COMAS-CARDONA S, BINETRUY C. Models of mechanical properties/behavior of dry fibrous materials at various scales in bending and tension: A review[J]. Composites Part A: Applied Science and Manufacturing,2012,43(8):1365-1388. DOI: 10.1016/j.compositesa.2012.03.012
[34] BOISSE P, COLMARS J, HAMILA N, et al. Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations[J]. Composites Part B: Engineering,2018,141:234-249. DOI: 10.1016/j.compositesb.2017.12.061
[35] SÜLE G. Investigation of bending and drape properties of woven fabrics and the effects of fabric constructional parameters and warp tension on these properties[J]. Textile Research Journal,2012,82(8):810-819. DOI: 10.1177/0040517511433152
[36] GATOUILLAT S, BAREGGI A, VIDAL-SALLÉ E, et al. Meso modelling for composite preform shaping–Simulation of the loss of cohesion of the woven fibre network[J]. Composites Part A: Applied Science and Manufacturing,2013,54:135-144. DOI: 10.1016/j.compositesa.2013.07.010
[37] BILISIK K. Bending behavior of multilayered and multidirectional stitched aramid woven fabric structures[J]. Textile Research Journal,2011,81(17):1748-1761. DOI: 10.1177/0040517511411974
[38] YU F, CHEN S, VIISAINEN J V, et al. A macroscale finite element approach for simulating the bending behaviour of biaxial fabrics[J]. Composites Science and Technology,2020,191:108078.
[39] LAMMENS N, KERSEMANS M, LUYCKX G, et al. Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)[J]. Textile Research Journal,2014,84(12):1307-1314. DOI: 10.1177/0040517514523182
[40] DE BILBAO E, SOULAT D, HIVET G, et al. Experimental study of bending behaviour of reinforcements[J]. Experimental Mechanics,2010,50(3):333-351. DOI: 10.1007/s11340-009-9234-9
[41] LIANG B, CHAUDET P, BOISSE P. Curvature determination in the bending test of continuous fibre reinforcements[J]. Strain,2017,53(1):12213.
[42] LIANG B, HAMILA N, PEILLON M, et al. Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations[J]. Compo-sites Part A: Applied Science and Manufacturing,2014,67:111-122. DOI: 10.1016/j.compositesa.2014.08.020
[43] SHERWOOD J A, FETFATSIDIS K A, GORCZYCA J L, et al. Fabric thermostamping in polymer matrix composites[M]//Manufacturing Techniques for Polymer Matrix Composites (PMCs). Sawston: Woodhead Publishing, 2012: 139-181.
[44] ALSHAHRANI H, HOJJATI M. A new test method for the characterization of the bending behavior of textile prepregs[J]. Composites Part A: Applied Science and Ma-nufacturing,2017,97:128-140. DOI: 10.1016/j.compositesa.2017.02.027
[45] ALSHAHRANI H, HOJJATI M. Bending behavior of multilayered textile composite prepregs: Experiment and finite element modeling[J]. Materials & Design,2017,124:211-224.
[46] LIANG B, COLMARS J, BOISSE P. A shell formulation for fibrous reinforcement forming simulations[J]. Compo-sites Part A: Applied Science and Manufacturing,2017,100:81-96. DOI: 10.1016/j.compositesa.2017.04.024
[47] DANGORA L M, MITCHELL C, WHITE K D, et al. Characterization of temperature-dependent tensile and flexural rigidities of a cross-ply thermoplastic lamina with implementation into a forming model[J]. International Journal of Material Forming,2016,11(1):43-52.
[48] MARGOSSIAN A, BEL S, HINTERHOELZL R. Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a dynamic mechanical analysis system[J]. Composites Part A: Applied Science and Manufacturing,2015,77:154-163. DOI: 10.1016/j.compositesa.2015.06.015
[49] CHARMETANT A, ORLIAC J G, VIDAL-SALLÉ E, et al. Hyperelastic model for large deformation analyses of 3D interlock composite preforms[J]. Composites Science and Technology,2012,72(12):1352-1360. DOI: 10.1016/j.compscitech.2012.05.006
[50] ROPERS S, KARDOS M, OSSWALD T A. A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing,2016,90:22-32. DOI: 10.1016/j.compositesa.2016.06.016
[51] SACHS U, AKKERMAN R. Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt[J]. Composites Part A: Applied Science and Manufacturing,2017,100:333-341. DOI: 10.1016/j.compositesa.2017.05.032
[52] POPPE C, ROSENKRANZ T, DÖRR D, et al. Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics[J]. Composites Part A: Applied Science and Manufacturing,2019,124:105466.
[53] BOISSE P, BAI R, COLMARS J, et al. The need to use generalized continuum mechanics to model 3D textile compo-site forming[J]. Applied Composite Materials,2018,25(4):761-771. DOI: 10.1007/s10443-018-9719-8
[54] CALISKAN U, APALAK M K. Low velocity bending impact behavior of foam core sandwich beams: Experimental[J]. Composites Part B: Engineering,2017,112:158-175. DOI: 10.1016/j.compositesb.2016.12.038
[55] ARIDHI A, ARFAOUI M, MABROUKI T, et al. Textile composite structural analysis taking into account the forming process[J]. Composites Part B: Engineering,2019,166:773-784. DOI: 10.1016/j.compositesb.2019.02.047
[56] MOEZZI M, YEKRANG J, KHODADAD A, et al. Characterizing the wrinkling behavior of woven engineering fabrics with local non-uniformity[J]. Composites Part A: Applied Science and Manufacturing,2019,118:20-29. DOI: 10.1016/j.compositesa.2018.12.010
[57] MONTAZERIAN H, RASHIDI A, HOORFAR M, et al. A frameless picture frame test with embedded sensor: Mitigation of imperfections in shear characterization of woven fabrics[J]. Composite Structures,2019,211:112-124. DOI: 10.1016/j.compstruct.2018.11.096
[58] ZHANG Y, SUN F, WANG Y, et al. Study on intra/inter-ply shear deformation of three dimensional woven preforms for composite materials[J]. Materials & Design,2013,49:151-159.
[59] BOISSE P, HAMILA N, VIDAL-SALLÉ E, et al. Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses[J]. Composites Science and Technology,2011,71(5):683-692. DOI: 10.1016/j.compscitech.2011.01.011
[60] HOSSEINI A, KASHANI M H, SASSANI F, et al. Identifying the distinct shear wrinkling behavior of woven composite preforms under bias extension and picture frame tests[J]. Composite Structures,2018,185:764-773. DOI: 10.1016/j.compstruct.2017.11.033
[61] SCHIRMAIER F J, WEIDENMANN K A, KÄRGER L, et al. Characterisation of the draping behaviour of unidirectional non-crimp fabrics (UD-NCF)[J]. Composites Part A: Applied Science and Manufacturing,2016,80:28-38. DOI: 10.1016/j.compositesa.2015.10.004
[62] MITCHELL C, DANGORA L, BIELMEIER C, et al. Investigation into the changes in bending stiffness of a textile reinforced composite due to in-plane fabric shear: Part 1–Experiment[J]. Composites Part A: Applied Science and Manufacturing,2016,85:94-102. DOI: 10.1016/j.compositesa.2016.03.008
[63] KHAN M A, MABROUKI T, VIDAL-SALLÉ E, et al. Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark[J]. Journal of Materials Processing Technology,2010,210(2):378-388. DOI: 10.1016/j.jmatprotec.2009.09.027
[64] DUHOVIC M, MITSCHANG P, BHATTACHARYYA D. Modelling approach for the prediction of stitch influence during woven fabric draping[J]. Composites Part A: Applied Science and Manufacturing,2011,42(8):968-978. DOI: 10.1016/j.compositesa.2011.03.025
[65] LI L, ZHAO Y, VUONG H G N, et al. In-plane shear investigation of biaxial carbon non-crimp fabrics with experimental tests and finite element modeling[J]. Materials & Design,2014,63:757-765.
[66] 罗锡林, 谭惠丰, 武国军, 等. 国产F_12芳纶织物面内剪切性能的实验[J]. 复合材料学报, 2015, 35(3):591-598. LUO X L, TAN H F, WU G J, et al. Experimental investigation of in-plane shear performance for F-12 aramid fabric[J]. Acta Materiae Compositae Sinica,2015,35(3):591-598(in Chinese).
[67] ZHU D, MOBASHER B, VAIDYA A, et al. Mechanical behaviors of Kevlar 49 fabric subjected to uniaxial, biaxial tension and in-plane large shear deformation[J]. Composites Science and Technology,2013,74:121-130. DOI: 10.1016/j.compscitech.2012.10.012
[68] CAO J, AKKERMAN R, BOISSE P, et al. Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results[J]. Composites Part A: Applied Science and Manufacturing,2008,39(6):1037-1053. DOI: 10.1016/j.compositesa.2008.02.016
[69] 关留祥, 李嘉禄, 焦亚男, 等. 航空发动机复合材料叶片用3D机织预制体研究进展[J]. 复合材料学报, 2018, 35(4):748-759. GUAN L X, LI J L, JIAO Y N, et al. Review of 3D woven preforms for the composite blades of aero engine[J]. Acta Materiae Compositae Sinica,2018,35(4):748-759(in Chinese).
[70] MOEZZI M, GHANE M, NICOLETTO G, et al. Analysis of the mechanical response of a woven polymeric fabric with locally induced damage[J]. Materials & Design,2014,54:279-290.
[71] ALSAYEDNOOR J, LENNARD F, YU W R, et al. Influence of specimen pre-shear and wrinkling on the accuracy of uniaxial bias extension test results[J]. Composites Part A: Applied Science and Manufacturing,2017,101:81-97. DOI: 10.1016/j.compositesa.2017.06.006
[72] 关留祥, 李嘉禄, 焦亚男, 等. 不平衡2.5D碳纤维机织预制体偏轴拉伸性能[J]. 复合材料学报, 2020, 37(2):293-301. GUAN L X, LI J L, JIAO Y N, et al. Research progress in nondestructive testing technologies for textile composite preform forming process[J]. Acta Materiae Compositae Sinica,2020,37(2):293-301(in Chinese).
[73] HARRISON P, ABDIWI F, GUO Z, et al. Characterising the shear–tension coupling and wrinkling behaviour of woven engineering fabrics[J]. Composites Part A: Applied Science and Manufacturing,2012,43(6):903-914. DOI: 10.1016/j.compositesa.2012.01.024
[74] RASHIDI A, MILANI A S. A multi-step biaxial bias extension test for wrinkling/de-wrinkling characterization of woven fabrics: Towards optimum forming design guidelines[J]. Materials & Design,2018,146:273-285.
[75] BOISSE P, HAMILA N, GUZMAN-MALDONADO E, et al. The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: A review[J]. International Journal of Material Forming,2016,10(4):473-492.
[76] HARRISON P, ALVAREZ M F, ANDERSON D. Towards comprehensive characterisation and modelling of the forming and wrinkling mechanics of engineering fabrics[J]. International Journal of Solids and Structures,2018,154:2-18. DOI: 10.1016/j.ijsolstr.2016.11.008
[77] HARRISON P, TAYLOR E, ALSAYEDNOOR J. Improving the accuracy of the uniaxial bias extension test on engineering fabrics using a simple wrinkle mitigation technique[J]. Composites Part A: Applied Science and Manufacturing,2018,108:53-61. DOI: 10.1016/j.compositesa.2018.02.025
[78] ZHAO X, LIU G, GONG M, et al. Effect of tackification on in-plane shear behaviours of biaxial woven fabrics in bias extension test: Experiments and finite element modeling[J]. Composites Science and Technology,2018,159:33-41. DOI: 10.1016/j.compscitech.2018.02.016
[79] POPPE C, DÖRR D, HENNING F, et al. Experimental and numerical investigation of the shear behaviour of infiltrated woven fabrics[J]. Composites Part A: Applied Science and Manufacturing,2018,114:327-337. DOI: 10.1016/j.compositesa.2018.08.018
[80] MACHADO M, MURENU L, FISCHLSCHWEIGER M, et al. Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic-matrix composites during forming[J]. Composites Part A: Applied Science and Manufacturing,2016,86:39-48. DOI: 10.1016/j.compositesa.2016.03.032
[81] 胡虹玲, 龚友坤, 彭雄奇, 等. 考虑拉剪耦合的二维编织物各向异性超弹性本构模型[J]. 复合材料学报, 2017, 34(6):1388-1393. HU H L, GONG Y K, PENG X Q, et al. An anisotropic hyperelastic constitutive model considering shear-tension coupling for 2-dementional woven fabrics[J]. Acta Materiae Compositae Sinica,2017,34(6):1388-1393(in Chinese).
[82] HARRISON P, HäRTEL F. Corrigendum to ‘Evaluation of normalisation methods for uniaxial bias extension tests on engineering fabrics’[J]. Composites Part A: Applied Science and Manufacturing,2016,80:104-106. DOI: 10.1016/j.compositesa.2015.10.013
[83] MATHIEU S, HAMILA N, BOUILLON F, et al. Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness[J]. Composites Science and Technology,2015,117:322-333. DOI: 10.1016/j.compscitech.2015.07.005
[84] TURK M A, VERMES B, THOMPSON A J, et al. Mitigating forming defects by local modification of dry preforms[J]. Composites Part A: Applied Science And Manufacturing,2020,128:105643.
[85] DUFOUR C, WANG P, BOUSSU F, et al. Experimental investigation about stamping behaviour of 3D warp interlock composite preforms[J]. Applied Composite Materials,2013,21(5):725-738.
[86] KHATKAR V, VIJAYALAKSHMI AG S, R N M, et al. Formability behaviour of 3D woven solid structures with varying stuffer binder ratio[J]. Materials Today: Proceedings,2019,18:2753-2759. DOI: 10.1016/j.matpr.2019.07.139
[87] ARNOLD S E, SUTCLIFFE M P F, ORAM W L A. Experimental measurement of wrinkle formation during draping of non-crimp fabric[J]. Composites Part A: Applied Science and Manufacturing,2016,82:159-169. DOI: 10.1016/j.compositesa.2015.12.011
[88] LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manu-facturing,2018,107:432-446. DOI: 10.1016/j.compositesa.2018.01.018
[89] RASHIDI A, MILANI A S. Passive control of wrinkles in woven fabric preforms using a geometrical modification of blank holders[J]. Composites Part A: Applied Science and Manufacturing,2018,105:300-309. DOI: 10.1016/j.compositesa.2017.11.023
[90] CHEN S, MCGREGOR O P L, HARPER L T, et al. Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern[J]. Composites Part A: Applied Science and Manufacturing,2016,91:156-167. DOI: 10.1016/j.compositesa.2016.09.016
[91] BARDL G, NOCKE A, HUBNER M, et al. Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique[J]. Composites Part B: Engineering,2018,132:49-60. DOI: 10.1016/j.compositesb.2017.08.007
[92] GUZMAN-MALDONADO E, WANG P, HAMILA N, et al. Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites[J]. Composite Structures,2019,208:213-223. DOI: 10.1016/j.compstruct.2018.10.018
[93] PENG X, REHMAN Z U. Textile composite double dome stamping simulation using a non-orthogonal constitutive model[J]. Composites Science and Technology,2011,71(8):1075-1081. DOI: 10.1016/j.compscitech.2011.03.010
[94] HARRISON P, GOMES R, CURADO-CORREIA N. Press forming a 0/90 cross-ply advanced thermoplastic compo-site using the double-dome benchmark geometry[J]. Composites Part A: Applied Science and Manufacturing,2013,54:56-69. DOI: 10.1016/j.compositesa.2013.06.014
[95] ALLAOUI S, BOISSE P, CHATEL S, et al. Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape[J]. Composites Part A: Applied Science and Manufacturing,2011,42(6):612-622. DOI: 10.1016/j.compositesa.2011.02.001
[96] ALLAOUI S, CELLARD C, HIVET G. Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms[J]. Composites Part A: Applied Science and Manufacturing,2015,68:336-345. DOI: 10.1016/j.compositesa.2014.10.017
-
期刊类型引用(12)
1. 贾宝惠,任鹏,宋挺,崔开心,肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响. 材料导报. 2024(05): 246-252 . 百度学术
2. 张宇,郭盼盼,熊婕,黄峰,王波. 循环湿热环境对树脂基复合材料弯曲性能的影响. 科学咨询(科技·管理). 2024(02): 135-138 . 百度学术
3. 牛存洋,寿文凯,顾海萍,孔德良. 以价值观为导向的生态学课程思政教学设计——以种群生活史对策为例. 科学咨询(教育科研). 2024(03): 134-137 . 百度学术
4. 刘鸿森,黄凯,黄金钊,韩晓剑,逯浩,骆杨,张莉,果立成. 考虑温度效应的复合材料紧固结构面外拉脱性能和失效机制. 复合材料学报. 2024(09): 4778-4790 . 本站查看
5. 王慧敏,任亮,范微微,陈阳,孙丽. 基于锥体结构复合材料制品布带缠绕成型关键工艺参数优化. 宇航材料工艺. 2024(05): 87-92 . 百度学术
6. 樊俊铃,马国庆,焦婷,陈曾美,韩啸. 温度和湿度对碳纤维增强复合材料老化影响研究综述. 航空科学技术. 2023(09): 1-13 . 百度学术
7. 刘宋婧,冯宇,张腾,毕亚萍,张铁军. 航空复合材料加筋板湿热环境下吸湿性能. 航空动力学报. 2023(09): 2231-2240 . 百度学术
8. 王静,程健,肖存勇,贾松,任荣,熊需海. 先进聚合物基复合材料超声焊接研究进展. 高分子材料科学与工程. 2023(09): 166-173 . 百度学术
9. 蒋平,吕太勇,吴丽华,José Pérez-Rigueiro,胡梦蕾,徐丽萍,黄诗怡,王安萍,郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异. 材料导报. 2023(23): 237-245 . 百度学术
10. 吴志猛. 聚四氟乙烯芳纶1313纤维树脂基复合材料的摩擦学性能研究. 化学工程与装备. 2022(09): 40-41+44 . 百度学术
11. 王志平,陈灏,路鹏程. 电-湿耦合作用下碳纤维增强树脂基复合材料损伤机制. 中国塑料. 2022(10): 39-45 . 百度学术
12. 史超帆,陈叔平,王洋,金树峰,于洋,何远新,杨帅,熊珍艳,史庆智. 纤维方向对环氧树脂/玻纤复合材料导热性能影响. 工程塑料应用. 2022(11): 108-116 . 百度学术
其他类型引用(9)
-