羧基化表面修饰纳米二氧化硅增强热塑性淀粉基生物降解塑料

Thermoplastic starch-based biodegradable plastics reinforced by carboxylated surface modification of nano silica

  • 摘要: 为了提高热塑性淀粉(TPS)的力学和耐水性能,用硅烷偶联剂KH550及丁二酸酐对纳米SiO2微球(SM-COOH)表面进行羧基化改性以提高界面结合力,并通过挤出注塑工艺制备SM-COOH/TPS复合材料,研究了不同含量的SM-COOH对复合材料力学、动态热力学、热稳定、表面耐水及流变加工性能的影响。结果表明:SM-COOH的加入可显著提高TPS的性能。当SM-COOH含量为2.0wt%时,复合材料的拉伸强度及冲击强度分别达到最大值12.71 MPa和15.918 kJ/m2,相比纯TPS,分别提高近4倍和2.6倍;复合材料的热稳定性能达到最大值,最大分解速率所对应的温度为322.1℃;此时,复合材料的峰值和平衡扭矩适中,也具有较好的流变加工性能。此外,复合材料的转变温度和表面接触角则随着SM-COOH含量的增加而提高。因此,羧基化表面改性纳米SiO2是一种能有效提高SM-COOH/TPS复合材料的力学和耐水等性能的方法,在淀粉基生物降解塑料领域具有广阔的发展和应用前景。

     

    Abstract: In order to improve the mechanical properties and water resistance of thermoplastic starch (TPS), the carboxylated silica microspheres (SM-COOH) modified by coupling agent KH550 and succinic anhydride were used to prepare the SM-COOH/TPS composites by extrusion and injection molding process. The effects of different contents of SM-COOH on the mechanical properties, dynamic thermodynamics, thermal stability, surface water resistance and rheological properties of the composites were studied in details. The results show that the added SM-COOH can improve the performance of TPS. When the content of SM-COOH is 2.0wt%, the tensile strength and impact strength of the composites reach the maximum value of 12.71 MPa and 15.918 kJ/m2, respectively, which are nearly 4 times and 2.6 times higher than that of pure TPS. The temperature corresponding to the maximum decomposition rate in DTG curves reaches the maximum of 322.1℃, and the peak value and equilibrium torque of the composites are moderate, which shows the better rheological processing properties. In addition, with the increased SM-COOH content, the transition temperature and surface contact angle of composites also increase. Therefore, adding the carboxylated modified nano-SiO2 into TPS is an effective method to improve the performance of SM-COOH/TPS composites, and will be useful in the area of starch-based biodegradable plastics.

     

/

返回文章
返回