Abstract:
Engineering cementitious composite (ECC) is widely used in structural seismic strengthening, and its fatigue performance is the focus of engineering. The uniaxial tensile cyclic loading test of ECC specimens was carried out by fatigue testing machine, and the development law of dynamic deformation, damage model and fatigue life was analyzed. The results show that under uniaxial tensile fatigue load, the stress-strain curve of ECC is sparse-dense-sparse. Residual strain develops in three stages and is described by six polynomial fitting. The correlation coefficient is basically greater than 0.9. Two physical quantities, strain rate and strain growth rate, are defined for the second stage. It is found that the higher the tensile stress ratio is, the larger the strain rate is and the shorter the cycle ratio is in the second stage. Strain growth rate varies from 0.0028 to 0.0098 and decreases with the increase of tensile stress ratio. The damage variable is defined by fatigue deformation modulus, and the two-stage fatigue damage evolution equation is established with the cycle life ratio
n/
N=0.7. The stress ratio
S=0.85 was verified, and the fatigue damage degree of the specimen was evaluated and the remaining life was predicted, which was highly correlated with the test results.