一种灌封结构用环氧树脂的固化行为表征和模拟

Characterization and simulation on the cure behavior of epoxy resin for encapsulation structure

  • 摘要: 以中高温固化的E39D环氧树脂为研究对象,基于顺序耦合热传导-固化和应力位移模块的数值仿真方法,选择合适的实验方法测试环氧树脂的固化性能,引入相关假设,推导与热传导-固化和应力位移模块相关的树脂固化性能参数和模型;然后,建立典型E39D树脂灌封结构的数值模型,模拟结构内部观测点在固化过程中的温度和应力演变,并基于FBG监测技术,与实验测试所得的观察点温度和应变进行对比;结果显示两者温度误差最大值为8.2%,应变的最大误差为17.3%,验证了固化性能参数测试方法和引入假设的合理性。

     

    Abstract: Based on simulation method which sequentially couples the heat transfer-cure and stress deformation modules for cure behavior, cure-related parameters were tested using adequate approaches for medium-high temperature curing resin E39D. In combination with reasonable hypotheses, curing resin property parameters or model which are related to heat transfer-cure and stress deformation modulus were derived. Then, finite element model of typical encapsulation structure containing E39D resin was built to simulate evolution of temperature and stress of the chosen point in the encapsulation structure, and the experimentally measured temperature and stress curves of the chose point were also given by means of Fiber Bragg Grating (FBG) monitoring technique. It can be observed that 8.2% maximum discrepancy in temperature and 17.3% maximum discrepancy in strain between experimental and numerical results exist, showing the validity of accepted assumptions and characterization methods.

     

/

返回文章
返回