考虑氧化损伤的陶瓷基复合材料弹性模量多尺度预测模型

A multi-scale prediction model of elastic modulus for ceramic matrix composites considering oxidation damage

  • 摘要: 分析了化学气相渗透(CVI)工艺制备的陶瓷基复合材料的氧化损伤演化规律,基于基体的微裂纹分布规律及界面、纤维、基体等组分氧化历程,建立了考虑温度、氧化时间影响的纤维和单胞两个尺度的弹性模量预测模型。预测结果表明,碳纤维(Cf)/SiC和SiC纤维(SiCf)/SiC复合材料的拉伸弹性模量随氧化温度升高和氧化时间的增长,下降趋势越明显。通过复合材料高温氧化后的力学性能试验,验证了弹性性能预测模型的正确性:BN界面的SiCf/SiC材料在1000℃不同时间氧化后预测结果与试验结果误差不超过2%;PyC界面的Cf/SiC在700℃不同时间氧化后预测结果与试验结果误差不超过7%。

     

    Abstract: The oxidation damage evolution law of ceramic matrix composites prepared by chemical vapor infiltration (CVI) process was analyzed. Considering the effects of temperature and oxidation time, prediction models of elastic modulus about fiber and cell were established based on the distribution of microcracks in matrix and the oxidation process of interface, fiber and matrix. The prediction results show that the tensile elastic moduli of carbon fiber (Cf)/SiC and SiC fiber (SiCf)/SiC composites decrease more obviously with the increase of temperature and oxidation time. The elastic prediction model was verified by the tensile tests of the composites after high temperature oxidation. The error between the prediction results and the test results of SiCf/SiC composites with BN interphase after oxidation at 1000 ℃ for different time is no more than 2%, and the error between the prediction results and the test results of Cf/SiC composites with PyC interphase after oxidation at 700℃ for different time is no more than 7%.

     

/

返回文章
返回