Mechanically stable superhydrophobic surface fabricated by self-growth of ZnO nanoflowers on vulcanized silicone rubber
-
摘要: 制造的复杂性和对机械接触的敏感性严重阻碍了超疏水材料在实际应用的发展。为在柔性基质(硫化的硅橡胶)表面制备机械耐久的柔性超疏水表面,利用硫化硅橡胶溶胀过程可逆的特性,改进溶胶-凝胶法,将硅橡胶片预先用正丁胺水溶液溶胀,然后浸入硝酸锌/乙醇溶液中。利用正丁胺水溶液和硝酸锌/乙醇溶液在硅橡胶表面的交互扩散、反应,使ZnO纳米花在橡胶表面原位生长。超疏水的粗糙结构的构筑来自于硝酸锌与正丁胺的协同作用,其静态接触角(CA)可达(158±1.5)°,滑动角(RA)可达(4.5±0.5)°。SEM图像显示,100~200 nm的ZnO纳米片生长在硅橡胶表面,ZnO纳米片“嵌入”到橡胶表面,而不是沉积在橡胶表面,因此提升了其机械耐久性。而通过向橡胶中添加硅烷偶联剂γ-氨丙基三乙氧基硅烷(KH550),可进一步提升ZnO纳米片与橡胶基体界面相互作用,即使承受300次线性磨损,仍能保持超疏水特性,表现出优异机械稳定性。而且经过500次循环弯曲变形,其疏水性也几乎没有变化,解决了超疏水涂层在基体弯曲变形时的脱落问题。这种超疏水橡胶制备技术简单且适合工业生产,具有极高的实用前景。Abstract: The development of superhydrophobic materials in practical applications has been severely hindered by the complexity of manufacturing and the sensitivity to mechanical contact. In order to prepare a mechanically durable flexible super-hydrophobic surface on the surface of a flexible substrate (vulcanized silicone rubber), using the reversible characteristics of the swelling process of vulcanized silicone rubber and the improved sol-gel method, the silicone rubber sheet was swelled with a n-butylamine aqueous solution in advance, and then immersed in zinc nitrate/ethanol solution. Due to the cross-diffusion, contact and reaction between zinc nitrate and n-butylamine aqueous solution on the surface of silicone rubber, ZnO nanoflowers were grown in-situ on the rubber surface. The construction of the superhydrophobic rough structure came from the synergistic effect of zinc nitrate and n-butylamine, with static contact angle and rolling angle being (158±1.5)° and (4.5±0.5)° respectively. SEM images show that ZnO nanosheets of 100-200 nm in thickness are generated and the ZnO nanosheets are “embedded”, not just “deposited” on the rubber surface, which improves the mechanical durability. By adding a silane coupling agent γ-aminopropyltriethoxysilane (KH550) to the silicone rubber compounds, the interface interaction between the ZnO nanosheets and the rubber matrix is further improved. Even with 300 times of linear wear, it could still maintain superhydrophobic and exhibit excellent mechanical stability. Moreover, after 500 cycles of bending deformation, its hydrophobicity hardly changes, which solves the problem of superhydrophobic coating falling off when the substrate is bent and deformed. High mechanical stability and simple preparation process endow the superhydrophobic rubber a high application prospect.
-
Keywords:
- sol-gel method /
- ZnO nanoflower /
- self-growth /
- mechanical stability /
- silicone rubber
-
纤维增强树脂基复合材料(Fiber reinforced polymer composite,FRP)由于其高比强度、高比刚度、耐腐蚀、抗疲劳和可设计性等优点,被广泛应用于航空航天领域[1]。与传统金属相比,复合材料结构能够减重20%~30%。随着复合材料技术的发展,复合材料在航空结构中的应用已逐渐从襟副翼、方向舵、扰流板和起落架舱门等次承力结构发展到机身、机翼、尾翼和后承压框等主承力结构,而且其在航空结构中的用量也逐步增加,波音787和空客380的复合材料用量已经达到了50%以上[2]。目前复合材料的用量已成为衡量航空飞行器先进性的重要标志之一[3]。由于飞行器的服役环境多样化,复杂极端环境因素如温度、湿度、紫外线和化学腐蚀等对复合材料性能的影响变得愈发不可忽视,其中湿热效应是复合材料性能下降的主要原因之一,严重影响整体结构的服役寿命[4]。
本文将主要针对湿热环境下纤维增强树脂基复合材料疲劳性能的研究进展进行介绍,并对未来湿热环境下复合材料的发展方向及需要解决的问题进行探讨。
1. 复合材料的水分扩散机制
在湿热环境中,温度和湿度对复合材料结构的影响是相互促进的。各类纤维的吸湿性能有较大的差异[5],碳和玻璃纤维吸湿能力有限,但芳纶和植物纤维更容易吸收水分,甚至可能比树脂吸收更多的水分[6]。对大多数纤维增强树脂基复合材料而言,其吸湿量主要取决于树脂。水分在树脂基体内的作用机制主要分为两部分[7-9]:一是水分子进入树脂内部导致树脂溶胀,进而增加树脂分子结构间距,增加分子链柔性,最终导致树脂增塑;二是树脂内部缺陷的吸湿引起树脂分子链断裂,最终导致缺陷进一步扩大,此时的破坏是不可逆的。而温度的升高会加速树脂的老化,使树脂产生水解、断链、交联结构破坏等变化,造成宏观上树脂的物理与化学性能退化,温度的升高也加速了水分在复合材料内部的扩散[10-11]。
纤维和树脂湿热膨胀系数的差异导致两者湿热变形不协调,在纤维/基体界面产生湿热应力[12-13]。当该应力值大于界面间的粘结力时,会导致界面发生脱粘[14],引起界面间的应力传递失衡,最终导致复合材料性能退化。几种纤维和树脂的湿热膨胀系数如表1所示。
表 1 纤维和树脂的湿热膨胀系数Table 1. Coefficient of hygrothermall expansion of fiber and resinMaterial Thermal expansion coefficient Moisture expansion coefficient α1/℃−1 α2/℃−1 β Fiber CCF300 0.13×10−6[15] 2.7×10−6[15] — T300 −0.54×10−6[16], −0.7×10−6[17] 10.08×10−6[16],12×10−6[17] — HMS −0.99×10−6[16] 6.84×10−6[16] — P75 −1.35×10−6[16] 6.84×10−6[16] — P100 −1.40×10−6[16] 6.84×10−6[16] — T700-12K −0.52×10−6[18] 10.2×10−6[18] — Resin Urea-formaldehyde 2.5×10−5[19] — 2.01×10−3[19] N5208 11×10−5[20], 6×10−5[17] — 0.6[20] Resin matrix 4.39×10−5[19] — 2.68×10−3[19] Epoxy (solid) 11.0×10−5[21] — 2.68×10−3[21] Epoxy (liquid) 8.8×10−5[21] — 0.35[21] Notes: α1 and α2—Longitudinal and transverse thermal expansion coefficients, respectively; β—Moisture expansion coefficient. 水分扩散过程的数学模型对于分析扩散机制非常重要。各向同性材料中的水分扩散符合Fick定律[22],可以通过材料的饱和吸湿量和扩散率表征其吸湿特性。饱和吸湿量是在一定湿热条件下材料达到吸湿平衡时的水分含量。扩散率是衡量材料达到饱和吸湿量过程中的吸湿速率。已有试验证明Fick定律适用于复合材料的水分扩散规律[23],但随着研究的进一步深入,发现各向异性材料的水分扩散过程要复杂的多,尤其是水分子和树脂基体中高分子的结合及复合材料内裂纹和空洞等缺陷的存在对水分扩散规律产生较大的影响[24]。国内外学者在复合材料的吸湿扩散规律方面开展了大量的研究,吸湿模型主要有Fick定律、Non-Fick定律、Langmuir双相模型、蒸汽边界条件模型、含横向应力和浓度的扩散模型和三维受阻扩散模型等,如表2所示。
表 2 复合材料吸湿模型Table 2. Moisture absorption model of compositesModel Mathematical model Scope Characteristic Reference Fick model MtM∞={1−8π2∞∑j=0exp[−(2j+1)2π2(Dth2)](2j+1)2} Polymers; Single-ply composites Diffusivity is constant [25-26] Non-Fick model MtM∞=(1+k√t){1−8π2∞∑j=0exp[−(2j+1)2π2(Dxth2)](2j+1)2} Ambient temperature is below the glass transition temperature of the polymer Diffusivity is constant in the intial stage, while it is changes in the later stage [27] Langmuir type model MtM∞={βγ+βe−γt[1−8π2∞(odd)∑l=1e−kl2tl2]+βγ+β(e−βt−e−γt)+(1−e−βt)} An initially dry one dimensional specimen Both the spatial distribution of moisture and total moisture uptake is a function of time. [28] Three-dimensional hindered diffusion model M∗=1−512μπ6∞∑P=0∞∑Q=0∞∑R=01(2P+1)2(2Q+1)2(2R+1)2e−αt∗−(1−μ)e−t∗ Polymeric composites Physical or molecular interactions at the microscale lead to hindered diffusion [29] Thickness-dependent non-Fickian model MtM∞=ϕ{1−exp[−7.3(Dzth2)0.75]}+(1−ϕ)[1−{exp[1−(α⟨t−t0⟩)0.75]}] Multi-ply composites Coefficient of the time delay term, α, decrease with thickness [30] Time-varying diffusion coefficient model Mt−MiM∞−Mi=1−8π2∞∑n=01(2n+1)exp{−(2n+1)2π2h2×{D0t+R∑r=1Dr[t+τr(e−t/τr−1)]}} Polymer Diffusivity and boundary concentration vary continuously with time [31] Dual-diffusivity model MtM∞=Vd{1−exp[−7.3(Ddth2)0.75]}+(1−Vd){1−exp[−7.3(Dlth2)0.75]} Two-phase structure Diffusion process is controlled only by the density of that phase [32] Modified dual-diffusivity model MtM∞=M1{1−exp[−7.3(D1th2)0.75]}+M2{1−exp[−7.3(D2th2)0.75]} Two-phase structure Density and hydrophilic character of both phases is different [33] Notes: Mt—Moisture content at the time t; M∞—Saturated moisture content; Mi—Initial moisture content; D—Diffusivity; Dx—Diffusivity in the x direction; t—Time of moisture absorption; h—Thickness of laminates; μ—Dimensionless hindrance coefficient; t*—Dimensionless parameter; φ—Fickian to non-Fickian maximum moisture content ratio; Dz—Moisture diffusivity that exhibits Fickian diffusion behavior; t0—Time of the initiation of non-Fickian moisture diffusion; D0—Unknown temperature-dependent Prony coefficients; τr—Corresponding retardation times; n—Number of terms in the Prony series; Dr, Dd—Diffusion coefficients of the less-dense and the dense phase, respectively; Vd—Volume fraction of the dense phase; M1, M2— Moisture content of the dense matrix and the less dense matrix, respectively; D1, D2—Diffusivity of the dense matrix and the less dense matrix, respectively; j, k, α, β, γ, l, P, Q, R—Parameter. 2. 影响纤维增强树脂基复合材料疲劳性能的湿热因素
对纤维增强树脂基复合材料而言,针对纤维长度、纤维种类、树脂种类、预浸料工艺及应力比等因素对其疲劳性能的影响都已经有了大量的研究。但湿热环境对其疲劳性能影响的研究,尚未形成一种被学者们广泛接受的分析和评定方法。现有的文献主要考察某一种或几种具体环境条件下复合材料的疲劳性能,不能广泛地应用。
2.1 温 度
引用的文献中并没有严格的温度值定义高低温。综合大多数文献,可认为对纤维增强树脂基复合材料而言,大于50℃为高温[34],23~25℃为室温[35],小于−50℃为低温[35]。
2.1.1 高 温
高温下分子热运动会加剧、基体软化、纤维/基体界面粘结力降低,导致大量纤维拉拔断裂,最终导致材料破坏[36]。无论是长期还是短期暴露在高温环境中,复合材料的基体和纤维/基体界面都会产生不可逆的物理和化学变化,增加材料的黏弹性和韧性[34],降低纤维/基体界面强度,降低复合材料的损伤容限和耐久性,如图1所示。而且无论是聚合物基复合材料还是混杂复合材料,温度对其疲劳分层都有较大的影响[37]。复合材料的层间断裂韧度随温度的升高而增加。在100℃时,复合材料的层间断裂韧度与室温相比增加了约20%[38],疲劳载荷下分层扩展的应变能释放率阈值为静态试验临界值的10%左右[38]。
高温导致的复合材料疲劳性能退化也受到应力比的影响。复合材料的S-N曲线在很大程度上取决于应力比而与温度无关;且在应力比相同时,不同温度下S-N曲线几乎是平行的[39]。对于三维互锁编织复合材料,当应力水平下降到阈值,材料都将达到疲劳极限而与温度无关[40]。Jia等[41]利用聚酰胺6(PA6)和聚酰胺66(PA66)及短玻璃纤维(GF)分别制备了GF/PA6和GFPA66复合材料,在−40℃、23℃和121℃时对两种复合材料进行拉伸疲劳试验,发现两种材料在−40℃时疲劳强度最高,在23℃时GF/PA66复合材料的疲劳强度高于GF/PA6复合材料,在121℃时两种材料的疲劳强度基本相同。如图2所示,23℃时湿热老化使两种材料的疲劳强度略有提高,但在121℃时,湿热老化对疲劳强度没有影响。
2.1.2 低 温
复合材料在经过低温处理后,降低了分子链流动性,增加了分子间结合力,基体发生收缩和硬化,因此基体的杨氏模量和拉伸强度往往随着温度的降低而增加[42]。但由于纤维和树脂的热膨胀系数相差较大(见表1),纤维和基体的变形有较大差异,在纤维/基体界面处产生残余应力,导致横向裂纹和脱粘[43]。
此外,低温处理增加了复合材料的分散性,产生了复杂的损伤过程,改变了复合材料的失效模式。在弯曲载荷作用下,Islam等[44]发现−196℃与室温下复合材料的破坏模式非常相似,但Meng等[45]发现在−196℃时复合材料的破坏模式与室温下明显不同,分层和纤维断裂是主要的破坏模式。这可能是由于聚合物基体的热收缩,层间界面变得更加紧密,这意味着分层需要更多的能量[46]。Coronado等[47]发现随着温度的降低基体的脆性行为逐渐占据主导地位,图3中基体上的小球就是由于低温环境中基体的脆性产生的。
2.2 热循环
对于可重复使用航天器,其储存液体推进剂的复合材料罐需经受低温推进剂的反复加注过程[48]。这也就意味着复合材料结构将经受热循环条件的挑战[49]。在热循环条件下,树脂和纤维之间热膨胀特性的显著差异会引起明显的内部微缺陷,影响结构的抗渗透性能[48, 50]。阐明热循环条件对复合材料力学响应和微观损伤演化的影响,对复合材料的进一步应用具有重要意义。
Shin等[51]建立低温-高温-低温循环系统模拟近地轨道卫星所处的环境条件,在80次热循环后发现,与125℃真空环境的质量相比,复合材料的质量下降了近1.0%。质量损失是基体损失和材料释放气体所导致的,且复合材料表面基体的损失与热循环次数成正比。George等[52]发现长时间暴露在近地轨道中,热循环会导致单向增强有机基复合材料的微裂纹萌生和扩展。Meng等[45]研究了热循环条件下T700/TED-86复合材料的拉伸和弯曲性能。如图4所示,150次循环后复合材料拉伸强度和弯曲强度分别下降了2.4%和10%。Grogan等[53]对比了不同铺层的碳纤维/聚醚醚酮(CF/PEEK)复合材料在热循环条件下的失效模式。如图5所示,铺层影响损伤形成,准各向同性层压板包含大量的微裂纹和较短的分层,而正交层合板则显示出大量的层间分层和相对较少的大尺寸微裂纹。
由于热载荷在复合材料内形成温度梯度,裂纹可能在层合板任一层中形成[54],且相邻层的微裂纹有可能贯穿,堆叠顺序[55]、层压板厚度[56]和边缘效应等因素都会影响裂纹密度[57]。随着热循环或载荷幅度的增加,分层可能从现有的横向裂纹或自由边缘开始。分层的存在也会导致层间界面横向裂纹张开度增加[58]。
2.3 湿 度
水分对复合材料性能的影响主要分为3部分:纤维、树脂、纤维/基体界面。这3部分的吸湿退化是耦合的但不是同步的,纤维的退化主要取决于老化时间,纤维/基体界面的退化主要取决于湿度,树脂的退化则受老化时间和湿度的共同影响。了解复合材料中吸湿对结构耐久性的影响至关重要。
复合材料损伤是由制造过程中形成的缺陷引起的,并因空洞、微裂纹、脱粘和分层等形成的应力集中而扩展[53]。而复合材料缺陷内的水分扩散也是损伤扩展的重要原因。聚合物往往对吸湿性敏感,树脂分子可以与水分子相互作用,分子链之间的氢键被破坏,导致链的流动性增加[59]。当含水量增加时,玻璃化转变温度趋于降低,断裂应变增加,断裂应力和杨氏模量降低[60-61]。
Malpot等[62]研究了3种相对湿度条件(相对湿度(RH)0、RH50%和RH100%)下复合材料吸湿量对疲劳性能的影响。如图6所示,当循环数小于104时,[(±45)3]、[(0/90)3]和[(90/0)3]的疲劳寿命随着相对湿度的增加而减小;当循环数大于104时,湿度条件几乎不影响其疲劳寿命。这表明在较低的疲劳应力作用下,复合材料的疲劳寿命与吸湿量无关。Patel等[63]发现石墨/环氧机织复合材料疲劳寿命的疲劳寿命不受水分的影响。而具有多轴取向的长GF增强聚合物复合材料吸收水分后,其强度和疲劳性能退化[64]。Meng等[65]采用加速试验方法研究了复合材料弯曲疲劳与水分的关系。结果表明,吸湿后疲劳抵抗能力降低了一个应力水平,例如从80%的极限弯曲强度(UFS)降低到65%的UFS。Bernasconi等[66]在室温下将短玻璃纤维增强聚酰胺6(GF30/PA6)复合材料浸泡7天,在循环加载过程中,未观察到裂纹萌生和扩展,而是观察到试样表面的普遍退化。试样表面的横向白线被认为是基体塑性变形的部位(图7)。
考虑到GF和碳纤维的生产能耗高且不可回收,植物纤维以其轻质和低成本的优势已成为GF和碳纤维的的替代品[67]。纤维素是植物纤维的主要成分,也是导致植物纤维优异结构特性和亲水性的主要因素。因此水分对植物纤维的进一步应用具有重要的影响。与干燥条件相比,吸收水分后,大麻纤维复合材料的损伤明显增加[68]。常温下浸泡35天后,水分使大麻纤维膨胀导致其强度和刚度,纤维与基体之间的剪切应力增大,纤维脱粘速度加快,疲劳强度比干燥条件下降低了约10%[69]。
2.4 湿热环境
复合材料结构往往在各种温度和湿度条件下承受循环载荷,而温度、湿度的耦合作用会引起材料性能退化,在材料内部形成湿热应力。并且在一段时间的内部损伤累积后易导致突然和灾难性失效,大幅度降低其疲劳寿命。
在湿热环境中,由于湿度和温度的变化导致复合材料内部产生湿热残余应力。湿热残余应力的形成主要有3种原因:一是纤维和基体的湿热膨胀系数存在较大差异;二是不同方向铺层的层间膨胀差异;三是湿度和温度在复合材料内部产生的湿热梯度。
2.4.1 恒定湿热
大多数文献在研究湿热环境对复合材料疲劳性能的影响时,通常选择恒定湿热条件。在温度恒定时,水分能通过复合材料表面和边缘扩散进入材料内部,在界面和层间产生湿热应力,引起复合材料刚度退化(图8(a)),最终导致界面脱粘和分层失效。在图8(b)可以看到湿热处理后的试样两侧的损伤大于未处理试样(深色表示分层破坏)。在湿度恒定时,温度的升高促进水分在材料中的扩散,提高材料的疲劳裂纹扩展速率。与常温环境相比,疲劳循环数相同时湿热环境下的疲劳损伤模式相似,但损伤程度较严重[70]。
在疲劳加载初期,复合材料首先在基体中产生裂纹,随着持续的加载裂纹逐渐达到饱和,部分纤维断裂;在加载后期,大量纤维发生断裂,纤维/基体界面和层间开裂,直到复合材料完全破坏[72]。目前复合材料的疲劳模型主要分为3种[1]:(1) 疲劳寿命模型;(2) 剩余强度/刚度唯象模型;(3) 渐进损伤模型。
在湿热耦合条件下,复合材料的疲劳性能退化比水分和高温单独作用下更严重[73]。为了探究不同湿热耦合条件下复合材料的疲劳性能,仅仅依靠试验研究是极其耗费时间和成本的。因此,建立数值模型来预测湿热环境下复合材料结构的疲劳性能是非常必要的。在数值计算技术中,渐进疲劳损伤模型已被用于预测湿热环境对复合材料疲劳性能的影响。Attukur Nandagopal等[74]在60℃海水中研究了湿热老化对复合材料力学性能的影响,采用了经验模型拟合材料的湿热老化结果,建立了湿热老化与拉伸、压缩和弯曲强度退化的关系。Gholami等[75]基于一种湿热条件下复合材料的试验结果,采用ABAQUS python模型计算湿热条件下复合材料弹性参数的退化,获得复合材料的瞬态性能,并将其扩展到其他湿热条件下进行数值计算,从而获得任一湿热条件对复合材料弹性性能的影响。
在疲劳渐进损伤模型中,Shan等[76]考虑了湿热老化引起的弹性参数退化,引入了一个无量纲温度参数T*,可以表示为[77]
T∗=Tg−TT0g−T0 (1) 式中:
Tg 和T0g 分别为湿态和干态下的玻璃化转变温度;T和T0分别为试验温度和室温。将湿热应变引入应力分析模型:
σ=C(ε−αΔT−βc) (2) 式中:α和β分别为热膨胀系数和湿膨胀系数;
ΔT 为试验温度和室温之差;c为吸湿量。基于已有的渐进损伤模型[78],将湿热应变引入材料退化模型和疲劳失效准则,通过构建一系列湿热相关的退化因子最终建立了基于微观力学的材料退化模型。
2.4.2 循环湿热
国内外对复合材料湿热性能的研究通常采取最恶劣的环境,例如水煮方法,以确保复合材料结构的安全性,尤其是在军机中的应用。但这样的环境条件不能真实模拟复合材料的服役环境,不能有效预测服役环境下复合材料结构的可靠性。
Patel等[63]通过模拟亚音速飞机发动机复合材料结构的使用环境,对AS-4/PR500复合材料的疲劳寿命进行预测。在循环湿热条件下,温度、湿度和疲劳载荷3个参数均为交变循环,单一参数的变化不能真实预测复合材料结构的疲劳寿命。Jedidi等[79]通过更改温湿度和试样尺寸,建立适用于超音速飞飞机的加速循环方法,加速模拟时间是真实时间的25倍。该方法能够模拟超音速飞行器的服役环境,试验环境下应力值与真实环境的基本相同,难点在于如何界定每个周期中各阶段的时间比例和加载方式。李野等[80]根据我国沿海地区环境编制了适用于军机复合材料结构的加速湿热老化谱。如图9所示,用一年的加速试验模拟飞机5000飞行小时和20年日历寿命。
目前,复合材料加速老化方法的研究已取得了很大的进展,但大多数研究采用恒定湿度和温度的试验环境来简化服役环境。而简化环境对复合材料的作用机制后易导致复合材料损伤机制发生变化,不能有效预测服役环境下复合材料结构可靠性和疲劳寿命。因此仍需进一步深入研究,尽量在较短的时间和较简单的环境条件下全面而合理地评估复合材料性能演化规律,为复合材料的发展提供理论基础。
2.4.3 热化耦合
在海洋环境中,高湿和高盐雾的耦合作用对飞机复合材料结构的性能影响尤为明显[81]。海洋环境的加速老化试验需要考虑紫外线辐射、温度交替、高湿和高盐雾等多因素的耦合作用,目前还没有一个能够准确模拟海洋自然环境各因素间协同作用的加速老化试验方法[82]。针对温度和化学介质对复合材料的影响是海洋环境的研究重点[83]。
Ghabezi等[84]分别对未老化和两种温度下海水老化后的复合材料进行拉伸测试,结果如图10所示。由于海水老化,碳纤维复合材料的拉伸强度和弹性模量,室温下降低了1.04%和0.52%,高温下降低了10.67%和2.76%。GF复合材料的拉伸强度和弹性模量,室温下降低了5.92%和6.3%,高温下降低了21.3%和28.7%。Kim等[85]发现海水浸泡后环氧树脂发生溶胀导致脱粘,玄武岩纤维/环氧树脂复合材料的拉伸强度降低了9%。
海水中所含的化学介质,会使复合材料在吸湿的同时面临化学降解导致的质量损失[86]。环氧树脂的化学降解不仅会引起树脂浸出导致质量损失,而且还可以通过毛细管作用促进水的扩散及通过树脂浸出产生的空隙来加速吸湿。化学降解后材料表面粗糙度增加也会增加水分扩散的表面积,从而影响吸湿率和饱和吸湿量。Sharma等[87]发现浸泡在海水中的复合材料表面存在Na、Cl、Ca、K、Mg、Sr等元素,如图11所示。长时间的浸泡会使材料表面盐分增加,由于离子堆积,材料表面的孔很可能被堵塞,这将抑制材料的吸水能力。但同时化学降解会在材料表面形成许多孔洞,盐离子(Na+、Cl−、K+)能够进入这些微孔洞和裂缝进一步导致基质、纤维和纤维/基质界面的严重退化[88-89]。这些盐离子可以破坏分子链加速环氧树脂的水解。
海水对复合材料疲劳性能的影响还没有准确的定论。大多数文献认为海水浸泡会加速复合材料损伤累积速率[90]。与未老化试样相比,海水老化后试样分层破坏更加严重,且疲劳寿命大幅度降低[91-92]。Prabhakar等[93]对海水饱和后的复合材料的弯曲疲劳性能进行研究,发现海水饱和后疲劳寿命明显降低,且应变范围越高疲劳寿命越低。Hu等[94]发现盐水对玻璃纤维/聚双环戊二烯基(GF/pDCPD)复合材料的水分扩散有较大的影响,但未观察到盐水腐蚀。如图12所示,在0°和90°两个加载方向下的S-N曲线趋势相同,GF/pDCPD复合材料显示出更大的疲劳强度,并且
S-N曲线的斜率随着时效时间的增加而减小,表明时效对低周疲劳的影响大于对高周疲劳的影响。但是也有一些文献发现海水环境中复合材料的吸湿会提高树脂的延展性[95],经海水浸泡后复合材料的疲劳性能并没有明显退化[96]。 3. 存在的问题和挑战
湿热环境下复合材料结构疲劳性能的研究需要充分考虑环境因素、应力集中、损伤演化等因素,将涉及复合材料疲劳损伤机制、疲劳寿命预测方法和湿热环境谱编制等关键技术的发展和完善。受制于试验技术、试验成本和损伤累积模式不清晰等因素的限制,湿热环境下复合材料疲劳性能的研究存在的问题及挑战主要有以下几点:
(1) 循环湿热环境下的复合材料疲劳失效机制研究。目前文献中湿热环境仅仅考虑单纯湿、热或湿热共同作用下材料的性能变化,多以恒温恒湿环境条件为主,而基于循环湿热、长周期老化谱的研究较少,不能真实模拟复合材料结构的工作环境;
(2) 湿热环境和疲劳载荷耦合作用下复合材料疲劳失效机制研究。环境损伤与动态载荷进行耦合后,会加剧复合材料构件变形、失效的进程,从而成为制约飞行器可靠性与寿命的瓶颈。因此,深入研究高性能树脂基复合材料在不同环境因素作用下的疲劳行为与损伤机制,具有十分重要的工程应用背景及理论研究价值;
(3) 对湿热老化机制缺乏深入研究,过度简化了服役环境对复合材料的作用机制,缺乏湿热环境、疲劳载荷和复合材料损伤演化等内在物理机制的研究。利用数值模拟手段建立微观机制与宏观性能的联系将是发展的一个方向。
4. 总结和展望
就湿热环境下纤维增强树脂基复合材料结构疲劳性能的相关研究情况进行了系统的论述和总结,得到如下结论:
(1) 在复合材料吸湿过程中,其饱和吸湿量取决于湿度,水分扩散率取决于温度。湿热老化后复合材料退化程度主要与树脂基体自身的性能(极性基团的数目和亲水性等)、树脂内部的自由体积、复合材料内部的空隙和固化产生的微裂纹及纤维/基体的结合状态有关;
(2) 国内外学者已对恒定湿热条件下复合材料的疲劳性能和破坏机制进行了大量研究,湿度和温度的变化对复合材料疲劳性能的影响很大,随着的温度和湿度的增加,疲劳强度和寿命总是减小的趋势;
(3) 循环湿热条件下复合材料损伤机制尚未明确,未能建立普遍适用的分析预测模型。
综合已有的研究及存在的问题,未来湿热环境下纤维增强树脂基复合材料疲劳性能的研究可以从以下几个方面考虑:
(1) 建立循环湿热条件下复合材料疲劳模型,充分考虑湿度和温度变化时复合材料的瞬态吸湿特性及其对疲劳性能的影响;
(2) 在水分和温度的基础上,考虑介质对复合材料疲劳性能的影响,建立湿热化耦合条件下材料退化模型;
(3) 深入研究真实载荷条件和真实环境条件下复合材料的破坏机制,完善已有的疲劳模型和数值计算方法。
-
图 7 未处理和处理过的超疏水SR表面上的水滴((a)、(b))、将处理过的膜浸入去离子水中 (c) 和在弯曲过程中处理过的表面上的水滴((d)~(g))照片
Figure 7. Photographs of superhydrophobic SR of water droplet on untreated and treated surface ((a), (b)), treated film was immersed in deionized water (c) and water droplets on the surface treated during the bending process ((d)-(g))
9 Si-69填充基体和KH550填充基体在不同的磨损循环后的超疏水SR的CA和RA值 ((a)、(b))、Si-69填充基体的300次磨损循环后的超疏水SR的表面形态的SEM图像 ((c)、(e)) 和KH550填充基体在700次磨损循环后超疏水SR的表面形态的SEM图像 ((d)、(f))
9. CA and RA values of superhydrophobic SR of Si-69 filled matrix and KH550 filled matrix after different wear cycles ((a), (b)), SEM images of the superhydrophobic SR surface morphology of the Si-69 filled matrix after 300 cycles of abrasion ((c), (e)) and SEM images of the superhydrophobic SR surface morphology of the KH550 filled matrix after 700 cycles of abrasion ((d), (f))
-
[1] WANG J, KAPLAN J A, COLSON Y L, et al. Stretch-induced drug delivery from superhydrophobic polymer composites: Use of crack propagati on failure modes for controlling release rates[J]. Angewandte Chemie International Edition,2016,55:2796-2800. DOI: 10.1002/anie.201511052
[2] ZHOU J C, FRANK M A, YANG Y Y, et al. A novel local drug delivery system: superhydrophobic tita-nium oxide nano-tube arrays serve as the drug reservoir and ultrasonication functions as the drug release trigger[J]. Materials Science and Engineering: C,2018,82:277-283. DOI: 10.1016/j.msec.2017.08.066
[3] 胡立琼, 雷鸣, 邱亚群, 等. 仿生超疏水表面在建筑和生物医药领域的研究进展[J]. 广东化工, 2016, 43(17):100-102. DOI: 10.3969/j.issn.1007-1865.2016.17.045 HU L Q, LEI M, QIU Y Q, et al. Application of biomimetic super-hydrophobic surface in construction and biological medicine field—A review[J]. Guangdong Journal of Che-mical Engineering,2016,43(17):100-102(in Chinese). DOI: 10.3969/j.issn.1007-1865.2016.17.045
[4] MALEKIDELARESTAQI M, MANSOURI A, CHINI S F. Electrokinetic energy conversion in a finite length superhydrophobic microchannel[J]. Chemical Physics Letters,2018,703:72-79. DOI: 10.1016/j.cplett.2018.05.007
[5] XUE X P, WANG S Q, ZHAN G C, et al. Fabrication of Ni Co coating by electrochemical deposition with high super-hydrophobic properties for corrosion protection[J]. Surface and Coatings Technology,2019,363:352-361. DOI: 10.1016/j.surfcoat.2019.02.056
[6] MISHCHENKO L, HATTON B, BAHADUR V, et al. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets[J]. ACS Nano,2010,4:7699-7707. DOI: 10.1021/nn102557p
[7] 莫春燕, 郑燕升, 王发龙, 等. TiO2/氟化含氢硅油超疏水防腐涂层的制备及性能[J]. 中国表面工程, 2015, 28(2):132-137. DOI: 10.11933/j.issn.1007-9289.2015.02.016 MO C Y, ZHENG Y S, WANG F L, et al. Preparation and property of TiO2/PMHS superhydrophobic and anticorrosive coating[J]. New Chemical Materials,2015,28(2):132-137(in Chinese). DOI: 10.11933/j.issn.1007-9289.2015.02.016
[8] GALOPIN E, PIRET G, SZUNERITS S, et al. Selective adhesion of bacillus cereus spores on heterogeneously wetted silicon nanowires[J]. Langmuir,2010,26(5):3479-3484. DOI: 10.1021/la9030377
[9] 周明, 郑傲然, 杨加宏. 复制模塑法制备超疏水表面及其应用[J]. 物理化学学报, 2007(8):164-168. ZHOU M, ZHENG A R, YANG J H. Superhydrophobic surfaces fabricated by replica molding and its applications[J]. Acta Physico-Chimica Sinica,2007(8):164-168(in Chinese).
[10] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Material,2018,17(4):355-360. DOI: 10.1038/s41563-018-0044-2
[11] CHEN F F, YANG Z Y, ZHU Y J, et al. Low-cost and scaled-up production of fluorine-free, sub-strate-independent, large-area superhydrophobic coatings based on hydroxyapatite nanowire bundles[J]. Chemistry-A European Journal,2018,24:416-424. DOI: 10.1002/chem.201703894
[12] LEE W K, JUNG W B, RHEE D, et al. Monolithic polymer nanoridges with programmable wetting transitions[J]. Advanced Materials,2018,30(32):1706657.
[13] ZHU C, GAO Y, HUANG Y, et al. Controlling states of water droplets on nanostructured surfaces by design[J]. Nanoscale,2017,9(46):18240-18245. DOI: 10.1039/C7NR06896D
[14] VAZIRINASAB E, JAFARI R, MOMEN G. Application of superhydrophobic coatings as a corrosion barrier: A review[J]. Surface and Coatings Technology,2019,375:100-111. DOI: 10.1016/j.surfcoat.2019.07.005
[15] 马宁, 程丹, 张景强, 等. 激光刻蚀法制备GH4169超疏水表面及性能研究[J]. 中国铸造装备与技术, 2020, 55(2):40-45. DOI: 10.3969/j.issn.1006-9658.2020.02.010 MA N, CHENG D, ZHANG J Q, et al. Preparation and properties of GH4169 super-hydrophobic surface by laser etching[J]. China Foundry Machinery & Technology,2020,55(2):40-45(in Chinese). DOI: 10.3969/j.issn.1006-9658.2020.02.010
[16] PENG P P, KE Q P, ZHOU G, et al. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method[J]. Journal of Colloid and Interface Science,2013,395:326-328. DOI: 10.1016/j.jcis.2012.12.036
[17] 孙巍, 周雨辰, 陈忠仁. 基于水滴模板法的微纳复合超疏水结构制备的研究[J]. 高分子学报, 2012(12):108-113. SUN W, ZHOU Y C, CHEN Z R. Construction of superhydrophobic surface via secondary processing of honeycomb-patterned substrate[J]. Acta Polymerica Sinica,2012(12):108-113(in Chinese).
[18] MAGHSOUDI K, MOMEN G, JAFARI R, et al. Direct replication of micro-nanostructures in the fabrication of superhydrophobic silicone rubber surfaces by compression molding[J]. Applied Surface Science,2018,458:619-628. DOI: 10.1016/j.apsusc.2018.07.099
[19] MUNIRASUA S, BANATA F, DURRANI A A, et al. Intrinsically superhydrophobic PVDF mem-brane by phase inversion for membrane distillation[J]. Desalination,2017,417:77-86. DOI: 10.1016/j.desal.2017.05.019
[20] WANG D H, SUN Q Q, HOKKANEN M J, et al. Design of robust superhydrophobic surfaces[J]. Nature,2020,582(7810):55-59. DOI: 10.1038/s41586-020-2331-8
[21] WU J, DONG J, WANG Y, et al. Thermal oxidation ageing effects on silicone rubber sealing performance[J]. Polymer Degradation and Stability,2017,135:43-53. DOI: 10.1016/j.polymdegradstab.2016.11.017
[22] DAVYDOVA M L, SOKOLOVA M D, HALDEEVA A R, et al. Modification of sealing rubber based on nitrile butadiene rubber by thermoexpanded graphite[J]. Journal of Friction & Wear,2015,36(1):23-28.
[23] PENG C Y, CHEN Z Y, TIWARI M K. All-organic superhydrophobic coatings with mechanochemical robustness and liquid impalement resistance[J]. Nature Materials,2020,582(7810):355-360.
[24] PENG C Y, CHEN Z Y, TIWARI M K, et al. Analysis of wear abrasion resistance of superhydrophobic acrylonitrile butadiene styrene rubber (ABS) nanocomposites[J]. Chemical Engineering Journal,2015,281:730-738. DOI: 10.1016/j.cej.2015.06.086
[25] 弯艳玲, 廉中旭, 刘志刚, 等. 高速电火花线切割制备耐用型超疏水铜表面[J]. 材料科学与工程学报, 2014, 32(5):634-637, 642. WAN Y L, LIAN Z X, LIU Z G, et al. Fabrication of robust super-hydrophobic copper surface by HS-WEDM[J]. Journal of Materials Science & Engineering,2014,32(5):634-637, 642(in Chinese).
[26] 武志富, 李素娟. 氢氧化锌和氧化锌的红外光谱特征[J]. 光谱实验室, 2012, 29(4):2172-2175. WU Z F, LI S J. Infrared spectra characteristics of zinc hydroxide and zinc oxide[J]. Chinese Journal of Spectroscopy Laboratory,2012,29(4):2172-2175(in Chinese).
-
期刊类型引用(12)
1. 贾宝惠,任鹏,宋挺,崔开心,肖海建. 湿热环境下端径比对复合材料螺栓连接结构静力拉伸失效的影响. 材料导报. 2024(05): 246-252 . 百度学术
2. 张宇,郭盼盼,熊婕,黄峰,王波. 循环湿热环境对树脂基复合材料弯曲性能的影响. 科学咨询(科技·管理). 2024(02): 135-138 . 百度学术
3. 牛存洋,寿文凯,顾海萍,孔德良. 以价值观为导向的生态学课程思政教学设计——以种群生活史对策为例. 科学咨询(教育科研). 2024(03): 134-137 . 百度学术
4. 刘鸿森,黄凯,黄金钊,韩晓剑,逯浩,骆杨,张莉,果立成. 考虑温度效应的复合材料紧固结构面外拉脱性能和失效机制. 复合材料学报. 2024(09): 4778-4790 . 本站查看
5. 王慧敏,任亮,范微微,陈阳,孙丽. 基于锥体结构复合材料制品布带缠绕成型关键工艺参数优化. 宇航材料工艺. 2024(05): 87-92 . 百度学术
6. 樊俊铃,马国庆,焦婷,陈曾美,韩啸. 温度和湿度对碳纤维增强复合材料老化影响研究综述. 航空科学技术. 2023(09): 1-13 . 百度学术
7. 刘宋婧,冯宇,张腾,毕亚萍,张铁军. 航空复合材料加筋板湿热环境下吸湿性能. 航空动力学报. 2023(09): 2231-2240 . 百度学术
8. 王静,程健,肖存勇,贾松,任荣,熊需海. 先进聚合物基复合材料超声焊接研究进展. 高分子材料科学与工程. 2023(09): 166-173 . 百度学术
9. 蒋平,吕太勇,吴丽华,José Pérez-Rigueiro,胡梦蕾,徐丽萍,黄诗怡,王安萍,郭聪. 形变导致的蜘蛛大壶状腺丝力学行为的记忆与变异. 材料导报. 2023(23): 237-245 . 百度学术
10. 吴志猛. 聚四氟乙烯芳纶1313纤维树脂基复合材料的摩擦学性能研究. 化学工程与装备. 2022(09): 40-41+44 . 百度学术
11. 王志平,陈灏,路鹏程. 电-湿耦合作用下碳纤维增强树脂基复合材料损伤机制. 中国塑料. 2022(10): 39-45 . 百度学术
12. 史超帆,陈叔平,王洋,金树峰,于洋,何远新,杨帅,熊珍艳,史庆智. 纤维方向对环氧树脂/玻纤复合材料导热性能影响. 工程塑料应用. 2022(11): 108-116 . 百度学术
其他类型引用(9)
-