碳纳米球复合g-C3N4提升光催化降解酸性橙Ⅱ性能

Improvement of the performance of photocatalytic degradation of acid orange Ⅱ by carbon nanospheres combined with g-C3N4

  • 摘要: 基于g-C3N4构建的异质结光催化材料在降解有毒有害污染物方面体现出优良的效果。本研究通过水热法制备了一系列不同碳纳米球(Carbon nanospheres,CS)添加量的x-CS/g-C3N4 (x=4wt%、5wt%和7wt%)复合光催化剂,以氙灯光源模拟可见光,探究了x-CS/g-C3N4对酸性橙Ⅱ的光催化降解性能。结果表明:5wt% CS/g-C3N4的光催化活性最高,光催化反应150 min,酸性橙Ⅱ的降解率达到95%。表征结果表明,g-C3N4与CS具有类似的π-π共轭结构,易发生π-π堆积相互作用而有利于电子跃迁。二者复合后能有效增强g-C3N4对可见光的吸收效率,降低其表面/界面处的电荷转移电阻,显著增强载流子的传输能力。x-CS/g-C3N4可作为一种有效的可见光催化剂应用于有机染料降解,具有应用前景。

     

    Abstract: The heterojunction photocatalytic material constructed with g-C3N4 as the matrix shows excellent effects in degrading toxic and harmful pollutants. In this study, a series of x-CS/g-C3N4 (x=4wt%, 5wt% and 7wt%) composite photocatalysts with different addition amounts of carbon nanospheres (CS) were prepared by hydrothermal method, and the photocatalytic degradation performance of x-CS/g-C3N4 on acid orange II were explored when a xenon lamp was used as a visible light source. The results show that the photocatalytic activity of 5wt% CS/g-C3N4 is the highest, and the degradation rate of acid orange II reaches 95% when the photocatalytic reaction is 150 min. The characterization results show that g-C3N4 and CS have a similar π-π conjugate structure, and π-π stacking interaction is prone to occur, which is beneficial to electronic transition. The combination of g-C3N4 and CS can effectively enhance the absorption efficiency of g-C3N4 for visible light, reduce the charge transfer resistance at the surface/interface, and significantly enhance the transport capacity of carriers. x-CS/g-C3N4 can be used as an effective visible light catalyst for the degradation of organic dyes and has application prospects.

     

/

返回文章
返回